aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go')
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go789
1 files changed, 789 insertions, 0 deletions
diff --git a/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go b/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go
new file mode 100644
index 0000000..7c038d1
--- /dev/null
+++ b/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go
@@ -0,0 +1,789 @@
+package printer
+
+import (
+ "bytes"
+ "fmt"
+ "sort"
+
+ "github.com/hashicorp/hcl/hcl/ast"
+ "github.com/hashicorp/hcl/hcl/token"
+)
+
+const (
+ blank = byte(' ')
+ newline = byte('\n')
+ tab = byte('\t')
+ infinity = 1 << 30 // offset or line
+)
+
+var (
+ unindent = []byte("\uE123") // in the private use space
+)
+
+type printer struct {
+ cfg Config
+ prev token.Pos
+
+ comments []*ast.CommentGroup // may be nil, contains all comments
+ standaloneComments []*ast.CommentGroup // contains all standalone comments (not assigned to any node)
+
+ enableTrace bool
+ indentTrace int
+}
+
+type ByPosition []*ast.CommentGroup
+
+func (b ByPosition) Len() int { return len(b) }
+func (b ByPosition) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
+func (b ByPosition) Less(i, j int) bool { return b[i].Pos().Before(b[j].Pos()) }
+
+// collectComments comments all standalone comments which are not lead or line
+// comment
+func (p *printer) collectComments(node ast.Node) {
+ // first collect all comments. This is already stored in
+ // ast.File.(comments)
+ ast.Walk(node, func(nn ast.Node) (ast.Node, bool) {
+ switch t := nn.(type) {
+ case *ast.File:
+ p.comments = t.Comments
+ return nn, false
+ }
+ return nn, true
+ })
+
+ standaloneComments := make(map[token.Pos]*ast.CommentGroup, 0)
+ for _, c := range p.comments {
+ standaloneComments[c.Pos()] = c
+ }
+
+ // next remove all lead and line comments from the overall comment map.
+ // This will give us comments which are standalone, comments which are not
+ // assigned to any kind of node.
+ ast.Walk(node, func(nn ast.Node) (ast.Node, bool) {
+ switch t := nn.(type) {
+ case *ast.LiteralType:
+ if t.LeadComment != nil {
+ for _, comment := range t.LeadComment.List {
+ if _, ok := standaloneComments[comment.Pos()]; ok {
+ delete(standaloneComments, comment.Pos())
+ }
+ }
+ }
+
+ if t.LineComment != nil {
+ for _, comment := range t.LineComment.List {
+ if _, ok := standaloneComments[comment.Pos()]; ok {
+ delete(standaloneComments, comment.Pos())
+ }
+ }
+ }
+ case *ast.ObjectItem:
+ if t.LeadComment != nil {
+ for _, comment := range t.LeadComment.List {
+ if _, ok := standaloneComments[comment.Pos()]; ok {
+ delete(standaloneComments, comment.Pos())
+ }
+ }
+ }
+
+ if t.LineComment != nil {
+ for _, comment := range t.LineComment.List {
+ if _, ok := standaloneComments[comment.Pos()]; ok {
+ delete(standaloneComments, comment.Pos())
+ }
+ }
+ }
+ }
+
+ return nn, true
+ })
+
+ for _, c := range standaloneComments {
+ p.standaloneComments = append(p.standaloneComments, c)
+ }
+
+ sort.Sort(ByPosition(p.standaloneComments))
+}
+
+// output prints creates b printable HCL output and returns it.
+func (p *printer) output(n interface{}) []byte {
+ var buf bytes.Buffer
+
+ switch t := n.(type) {
+ case *ast.File:
+ // File doesn't trace so we add the tracing here
+ defer un(trace(p, "File"))
+ return p.output(t.Node)
+ case *ast.ObjectList:
+ defer un(trace(p, "ObjectList"))
+
+ var index int
+ for {
+ // Determine the location of the next actual non-comment
+ // item. If we're at the end, the next item is at "infinity"
+ var nextItem token.Pos
+ if index != len(t.Items) {
+ nextItem = t.Items[index].Pos()
+ } else {
+ nextItem = token.Pos{Offset: infinity, Line: infinity}
+ }
+
+ // Go through the standalone comments in the file and print out
+ // the comments that we should be for this object item.
+ for _, c := range p.standaloneComments {
+ // Go through all the comments in the group. The group
+ // should be printed together, not separated by double newlines.
+ printed := false
+ newlinePrinted := false
+ for _, comment := range c.List {
+ // We only care about comments after the previous item
+ // we've printed so that comments are printed in the
+ // correct locations (between two objects for example).
+ // And before the next item.
+ if comment.Pos().After(p.prev) && comment.Pos().Before(nextItem) {
+ // if we hit the end add newlines so we can print the comment
+ // we don't do this if prev is invalid which means the
+ // beginning of the file since the first comment should
+ // be at the first line.
+ if !newlinePrinted && p.prev.IsValid() && index == len(t.Items) {
+ buf.Write([]byte{newline, newline})
+ newlinePrinted = true
+ }
+
+ // Write the actual comment.
+ buf.WriteString(comment.Text)
+ buf.WriteByte(newline)
+
+ // Set printed to true to note that we printed something
+ printed = true
+ }
+ }
+
+ // If we're not at the last item, write a new line so
+ // that there is a newline separating this comment from
+ // the next object.
+ if printed && index != len(t.Items) {
+ buf.WriteByte(newline)
+ }
+ }
+
+ if index == len(t.Items) {
+ break
+ }
+
+ buf.Write(p.output(t.Items[index]))
+ if index != len(t.Items)-1 {
+ // Always write a newline to separate us from the next item
+ buf.WriteByte(newline)
+
+ // Need to determine if we're going to separate the next item
+ // with a blank line. The logic here is simple, though there
+ // are a few conditions:
+ //
+ // 1. The next object is more than one line away anyways,
+ // so we need an empty line.
+ //
+ // 2. The next object is not a "single line" object, so
+ // we need an empty line.
+ //
+ // 3. This current object is not a single line object,
+ // so we need an empty line.
+ current := t.Items[index]
+ next := t.Items[index+1]
+ if next.Pos().Line != t.Items[index].Pos().Line+1 ||
+ !p.isSingleLineObject(next) ||
+ !p.isSingleLineObject(current) {
+ buf.WriteByte(newline)
+ }
+ }
+ index++
+ }
+ case *ast.ObjectKey:
+ buf.WriteString(t.Token.Text)
+ case *ast.ObjectItem:
+ p.prev = t.Pos()
+ buf.Write(p.objectItem(t))
+ case *ast.LiteralType:
+ buf.Write(p.literalType(t))
+ case *ast.ListType:
+ buf.Write(p.list(t))
+ case *ast.ObjectType:
+ buf.Write(p.objectType(t))
+ default:
+ fmt.Printf(" unknown type: %T\n", n)
+ }
+
+ return buf.Bytes()
+}
+
+func (p *printer) literalType(lit *ast.LiteralType) []byte {
+ result := []byte(lit.Token.Text)
+ switch lit.Token.Type {
+ case token.HEREDOC:
+ // Clear the trailing newline from heredocs
+ if result[len(result)-1] == '\n' {
+ result = result[:len(result)-1]
+ }
+
+ // Poison lines 2+ so that we don't indent them
+ result = p.heredocIndent(result)
+ case token.STRING:
+ // If this is a multiline string, poison lines 2+ so we don't
+ // indent them.
+ if bytes.IndexRune(result, '\n') >= 0 {
+ result = p.heredocIndent(result)
+ }
+ }
+
+ return result
+}
+
+// objectItem returns the printable HCL form of an object item. An object type
+// starts with one/multiple keys and has a value. The value might be of any
+// type.
+func (p *printer) objectItem(o *ast.ObjectItem) []byte {
+ defer un(trace(p, fmt.Sprintf("ObjectItem: %s", o.Keys[0].Token.Text)))
+ var buf bytes.Buffer
+
+ if o.LeadComment != nil {
+ for _, comment := range o.LeadComment.List {
+ buf.WriteString(comment.Text)
+ buf.WriteByte(newline)
+ }
+ }
+
+ // If key and val are on different lines, treat line comments like lead comments.
+ if o.LineComment != nil && o.Val.Pos().Line != o.Keys[0].Pos().Line {
+ for _, comment := range o.LineComment.List {
+ buf.WriteString(comment.Text)
+ buf.WriteByte(newline)
+ }
+ }
+
+ for i, k := range o.Keys {
+ buf.WriteString(k.Token.Text)
+ buf.WriteByte(blank)
+
+ // reach end of key
+ if o.Assign.IsValid() && i == len(o.Keys)-1 && len(o.Keys) == 1 {
+ buf.WriteString("=")
+ buf.WriteByte(blank)
+ }
+ }
+
+ buf.Write(p.output(o.Val))
+
+ if o.LineComment != nil && o.Val.Pos().Line == o.Keys[0].Pos().Line {
+ buf.WriteByte(blank)
+ for _, comment := range o.LineComment.List {
+ buf.WriteString(comment.Text)
+ }
+ }
+
+ return buf.Bytes()
+}
+
+// objectType returns the printable HCL form of an object type. An object type
+// begins with a brace and ends with a brace.
+func (p *printer) objectType(o *ast.ObjectType) []byte {
+ defer un(trace(p, "ObjectType"))
+ var buf bytes.Buffer
+ buf.WriteString("{")
+
+ var index int
+ var nextItem token.Pos
+ var commented, newlinePrinted bool
+ for {
+ // Determine the location of the next actual non-comment
+ // item. If we're at the end, the next item is the closing brace
+ if index != len(o.List.Items) {
+ nextItem = o.List.Items[index].Pos()
+ } else {
+ nextItem = o.Rbrace
+ }
+
+ // Go through the standalone comments in the file and print out
+ // the comments that we should be for this object item.
+ for _, c := range p.standaloneComments {
+ printed := false
+ var lastCommentPos token.Pos
+ for _, comment := range c.List {
+ // We only care about comments after the previous item
+ // we've printed so that comments are printed in the
+ // correct locations (between two objects for example).
+ // And before the next item.
+ if comment.Pos().After(p.prev) && comment.Pos().Before(nextItem) {
+ // If there are standalone comments and the initial newline has not
+ // been printed yet, do it now.
+ if !newlinePrinted {
+ newlinePrinted = true
+ buf.WriteByte(newline)
+ }
+
+ // add newline if it's between other printed nodes
+ if index > 0 {
+ commented = true
+ buf.WriteByte(newline)
+ }
+
+ // Store this position
+ lastCommentPos = comment.Pos()
+
+ // output the comment itself
+ buf.Write(p.indent(p.heredocIndent([]byte(comment.Text))))
+
+ // Set printed to true to note that we printed something
+ printed = true
+
+ /*
+ if index != len(o.List.Items) {
+ buf.WriteByte(newline) // do not print on the end
+ }
+ */
+ }
+ }
+
+ // Stuff to do if we had comments
+ if printed {
+ // Always write a newline
+ buf.WriteByte(newline)
+
+ // If there is another item in the object and our comment
+ // didn't hug it directly, then make sure there is a blank
+ // line separating them.
+ if nextItem != o.Rbrace && nextItem.Line != lastCommentPos.Line+1 {
+ buf.WriteByte(newline)
+ }
+ }
+ }
+
+ if index == len(o.List.Items) {
+ p.prev = o.Rbrace
+ break
+ }
+
+ // At this point we are sure that it's not a totally empty block: print
+ // the initial newline if it hasn't been printed yet by the previous
+ // block about standalone comments.
+ if !newlinePrinted {
+ buf.WriteByte(newline)
+ newlinePrinted = true
+ }
+
+ // check if we have adjacent one liner items. If yes we'll going to align
+ // the comments.
+ var aligned []*ast.ObjectItem
+ for _, item := range o.List.Items[index:] {
+ // we don't group one line lists
+ if len(o.List.Items) == 1 {
+ break
+ }
+
+ // one means a oneliner with out any lead comment
+ // two means a oneliner with lead comment
+ // anything else might be something else
+ cur := lines(string(p.objectItem(item)))
+ if cur > 2 {
+ break
+ }
+
+ curPos := item.Pos()
+
+ nextPos := token.Pos{}
+ if index != len(o.List.Items)-1 {
+ nextPos = o.List.Items[index+1].Pos()
+ }
+
+ prevPos := token.Pos{}
+ if index != 0 {
+ prevPos = o.List.Items[index-1].Pos()
+ }
+
+ // fmt.Println("DEBUG ----------------")
+ // fmt.Printf("prev = %+v prevPos: %s\n", prev, prevPos)
+ // fmt.Printf("cur = %+v curPos: %s\n", cur, curPos)
+ // fmt.Printf("next = %+v nextPos: %s\n", next, nextPos)
+
+ if curPos.Line+1 == nextPos.Line {
+ aligned = append(aligned, item)
+ index++
+ continue
+ }
+
+ if curPos.Line-1 == prevPos.Line {
+ aligned = append(aligned, item)
+ index++
+
+ // finish if we have a new line or comment next. This happens
+ // if the next item is not adjacent
+ if curPos.Line+1 != nextPos.Line {
+ break
+ }
+ continue
+ }
+
+ break
+ }
+
+ // put newlines if the items are between other non aligned items.
+ // newlines are also added if there is a standalone comment already, so
+ // check it too
+ if !commented && index != len(aligned) {
+ buf.WriteByte(newline)
+ }
+
+ if len(aligned) >= 1 {
+ p.prev = aligned[len(aligned)-1].Pos()
+
+ items := p.alignedItems(aligned)
+ buf.Write(p.indent(items))
+ } else {
+ p.prev = o.List.Items[index].Pos()
+
+ buf.Write(p.indent(p.objectItem(o.List.Items[index])))
+ index++
+ }
+
+ buf.WriteByte(newline)
+ }
+
+ buf.WriteString("}")
+ return buf.Bytes()
+}
+
+func (p *printer) alignedItems(items []*ast.ObjectItem) []byte {
+ var buf bytes.Buffer
+
+ // find the longest key and value length, needed for alignment
+ var longestKeyLen int // longest key length
+ var longestValLen int // longest value length
+ for _, item := range items {
+ key := len(item.Keys[0].Token.Text)
+ val := len(p.output(item.Val))
+
+ if key > longestKeyLen {
+ longestKeyLen = key
+ }
+
+ if val > longestValLen {
+ longestValLen = val
+ }
+ }
+
+ for i, item := range items {
+ if item.LeadComment != nil {
+ for _, comment := range item.LeadComment.List {
+ buf.WriteString(comment.Text)
+ buf.WriteByte(newline)
+ }
+ }
+
+ for i, k := range item.Keys {
+ keyLen := len(k.Token.Text)
+ buf.WriteString(k.Token.Text)
+ for i := 0; i < longestKeyLen-keyLen+1; i++ {
+ buf.WriteByte(blank)
+ }
+
+ // reach end of key
+ if i == len(item.Keys)-1 && len(item.Keys) == 1 {
+ buf.WriteString("=")
+ buf.WriteByte(blank)
+ }
+ }
+
+ val := p.output(item.Val)
+ valLen := len(val)
+ buf.Write(val)
+
+ if item.Val.Pos().Line == item.Keys[0].Pos().Line && item.LineComment != nil {
+ for i := 0; i < longestValLen-valLen+1; i++ {
+ buf.WriteByte(blank)
+ }
+
+ for _, comment := range item.LineComment.List {
+ buf.WriteString(comment.Text)
+ }
+ }
+
+ // do not print for the last item
+ if i != len(items)-1 {
+ buf.WriteByte(newline)
+ }
+ }
+
+ return buf.Bytes()
+}
+
+// list returns the printable HCL form of an list type.
+func (p *printer) list(l *ast.ListType) []byte {
+ if p.isSingleLineList(l) {
+ return p.singleLineList(l)
+ }
+
+ var buf bytes.Buffer
+ buf.WriteString("[")
+ buf.WriteByte(newline)
+
+ var longestLine int
+ for _, item := range l.List {
+ // for now we assume that the list only contains literal types
+ if lit, ok := item.(*ast.LiteralType); ok {
+ lineLen := len(lit.Token.Text)
+ if lineLen > longestLine {
+ longestLine = lineLen
+ }
+ }
+ }
+
+ haveEmptyLine := false
+ for i, item := range l.List {
+ // If we have a lead comment, then we want to write that first
+ leadComment := false
+ if lit, ok := item.(*ast.LiteralType); ok && lit.LeadComment != nil {
+ leadComment = true
+
+ // Ensure an empty line before every element with a
+ // lead comment (except the first item in a list).
+ if !haveEmptyLine && i != 0 {
+ buf.WriteByte(newline)
+ }
+
+ for _, comment := range lit.LeadComment.List {
+ buf.Write(p.indent([]byte(comment.Text)))
+ buf.WriteByte(newline)
+ }
+ }
+
+ // also indent each line
+ val := p.output(item)
+ curLen := len(val)
+ buf.Write(p.indent(val))
+
+ // if this item is a heredoc, then we output the comma on
+ // the next line. This is the only case this happens.
+ comma := []byte{','}
+ if lit, ok := item.(*ast.LiteralType); ok && lit.Token.Type == token.HEREDOC {
+ buf.WriteByte(newline)
+ comma = p.indent(comma)
+ }
+
+ buf.Write(comma)
+
+ if lit, ok := item.(*ast.LiteralType); ok && lit.LineComment != nil {
+ // if the next item doesn't have any comments, do not align
+ buf.WriteByte(blank) // align one space
+ for i := 0; i < longestLine-curLen; i++ {
+ buf.WriteByte(blank)
+ }
+
+ for _, comment := range lit.LineComment.List {
+ buf.WriteString(comment.Text)
+ }
+ }
+
+ buf.WriteByte(newline)
+
+ // Ensure an empty line after every element with a
+ // lead comment (except the first item in a list).
+ haveEmptyLine = leadComment && i != len(l.List)-1
+ if haveEmptyLine {
+ buf.WriteByte(newline)
+ }
+ }
+
+ buf.WriteString("]")
+ return buf.Bytes()
+}
+
+// isSingleLineList returns true if:
+// * they were previously formatted entirely on one line
+// * they consist entirely of literals
+// * there are either no heredoc strings or the list has exactly one element
+// * there are no line comments
+func (printer) isSingleLineList(l *ast.ListType) bool {
+ for _, item := range l.List {
+ if item.Pos().Line != l.Lbrack.Line {
+ return false
+ }
+
+ lit, ok := item.(*ast.LiteralType)
+ if !ok {
+ return false
+ }
+
+ if lit.Token.Type == token.HEREDOC && len(l.List) != 1 {
+ return false
+ }
+
+ if lit.LineComment != nil {
+ return false
+ }
+ }
+
+ return true
+}
+
+// singleLineList prints a simple single line list.
+// For a definition of "simple", see isSingleLineList above.
+func (p *printer) singleLineList(l *ast.ListType) []byte {
+ buf := &bytes.Buffer{}
+
+ buf.WriteString("[")
+ for i, item := range l.List {
+ if i != 0 {
+ buf.WriteString(", ")
+ }
+
+ // Output the item itself
+ buf.Write(p.output(item))
+
+ // The heredoc marker needs to be at the end of line.
+ if lit, ok := item.(*ast.LiteralType); ok && lit.Token.Type == token.HEREDOC {
+ buf.WriteByte(newline)
+ }
+ }
+
+ buf.WriteString("]")
+ return buf.Bytes()
+}
+
+// indent indents the lines of the given buffer for each non-empty line
+func (p *printer) indent(buf []byte) []byte {
+ var prefix []byte
+ if p.cfg.SpacesWidth != 0 {
+ for i := 0; i < p.cfg.SpacesWidth; i++ {
+ prefix = append(prefix, blank)
+ }
+ } else {
+ prefix = []byte{tab}
+ }
+
+ var res []byte
+ bol := true
+ for _, c := range buf {
+ if bol && c != '\n' {
+ res = append(res, prefix...)
+ }
+
+ res = append(res, c)
+ bol = c == '\n'
+ }
+ return res
+}
+
+// unindent removes all the indentation from the tombstoned lines
+func (p *printer) unindent(buf []byte) []byte {
+ var res []byte
+ for i := 0; i < len(buf); i++ {
+ skip := len(buf)-i <= len(unindent)
+ if !skip {
+ skip = !bytes.Equal(unindent, buf[i:i+len(unindent)])
+ }
+ if skip {
+ res = append(res, buf[i])
+ continue
+ }
+
+ // We have a marker. we have to backtrace here and clean out
+ // any whitespace ahead of our tombstone up to a \n
+ for j := len(res) - 1; j >= 0; j-- {
+ if res[j] == '\n' {
+ break
+ }
+
+ res = res[:j]
+ }
+
+ // Skip the entire unindent marker
+ i += len(unindent) - 1
+ }
+
+ return res
+}
+
+// heredocIndent marks all the 2nd and further lines as unindentable
+func (p *printer) heredocIndent(buf []byte) []byte {
+ var res []byte
+ bol := false
+ for _, c := range buf {
+ if bol && c != '\n' {
+ res = append(res, unindent...)
+ }
+ res = append(res, c)
+ bol = c == '\n'
+ }
+ return res
+}
+
+// isSingleLineObject tells whether the given object item is a single
+// line object such as "obj {}".
+//
+// A single line object:
+//
+// * has no lead comments (hence multi-line)
+// * has no assignment
+// * has no values in the stanza (within {})
+//
+func (p *printer) isSingleLineObject(val *ast.ObjectItem) bool {
+ // If there is a lead comment, can't be one line
+ if val.LeadComment != nil {
+ return false
+ }
+
+ // If there is assignment, we always break by line
+ if val.Assign.IsValid() {
+ return false
+ }
+
+ // If it isn't an object type, then its not a single line object
+ ot, ok := val.Val.(*ast.ObjectType)
+ if !ok {
+ return false
+ }
+
+ // If the object has no items, it is single line!
+ return len(ot.List.Items) == 0
+}
+
+func lines(txt string) int {
+ endline := 1
+ for i := 0; i < len(txt); i++ {
+ if txt[i] == '\n' {
+ endline++
+ }
+ }
+ return endline
+}
+
+// ----------------------------------------------------------------------------
+// Tracing support
+
+func (p *printer) printTrace(a ...interface{}) {
+ if !p.enableTrace {
+ return
+ }
+
+ const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
+ const n = len(dots)
+ i := 2 * p.indentTrace
+ for i > n {
+ fmt.Print(dots)
+ i -= n
+ }
+ // i <= n
+ fmt.Print(dots[0:i])
+ fmt.Println(a...)
+}
+
+func trace(p *printer, msg string) *printer {
+ p.printTrace(msg, "(")
+ p.indentTrace++
+ return p
+}
+
+// Usage pattern: defer un(trace(p, "..."))
+func un(p *printer) {
+ p.indentTrace--
+ p.printTrace(")")
+}