aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/prometheus/client_golang/prometheus/doc.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/prometheus/client_golang/prometheus/doc.go')
-rw-r--r--vendor/github.com/prometheus/client_golang/prometheus/doc.go181
1 files changed, 181 insertions, 0 deletions
diff --git a/vendor/github.com/prometheus/client_golang/prometheus/doc.go b/vendor/github.com/prometheus/client_golang/prometheus/doc.go
new file mode 100644
index 0000000..618c4de
--- /dev/null
+++ b/vendor/github.com/prometheus/client_golang/prometheus/doc.go
@@ -0,0 +1,181 @@
+// Copyright 2014 The Prometheus Authors
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Package prometheus provides metrics primitives to instrument code for
+// monitoring. It also offers a registry for metrics. Sub-packages allow to
+// expose the registered metrics via HTTP (package promhttp) or push them to a
+// Pushgateway (package push).
+//
+// All exported functions and methods are safe to be used concurrently unless
+//specified otherwise.
+//
+// A Basic Example
+//
+// As a starting point, a very basic usage example:
+//
+// package main
+//
+// import (
+// "net/http"
+//
+// "github.com/prometheus/client_golang/prometheus"
+// "github.com/prometheus/client_golang/prometheus/promhttp"
+// )
+//
+// var (
+// cpuTemp = prometheus.NewGauge(prometheus.GaugeOpts{
+// Name: "cpu_temperature_celsius",
+// Help: "Current temperature of the CPU.",
+// })
+// hdFailures = prometheus.NewCounterVec(
+// prometheus.CounterOpts{
+// Name: "hd_errors_total",
+// Help: "Number of hard-disk errors.",
+// },
+// []string{"device"},
+// )
+// )
+//
+// func init() {
+// // Metrics have to be registered to be exposed:
+// prometheus.MustRegister(cpuTemp)
+// prometheus.MustRegister(hdFailures)
+// }
+//
+// func main() {
+// cpuTemp.Set(65.3)
+// hdFailures.With(prometheus.Labels{"device":"/dev/sda"}).Inc()
+//
+// // The Handler function provides a default handler to expose metrics
+// // via an HTTP server. "/metrics" is the usual endpoint for that.
+// http.Handle("/metrics", promhttp.Handler())
+// log.Fatal(http.ListenAndServe(":8080", nil))
+// }
+//
+//
+// This is a complete program that exports two metrics, a Gauge and a Counter,
+// the latter with a label attached to turn it into a (one-dimensional) vector.
+//
+// Metrics
+//
+// The number of exported identifiers in this package might appear a bit
+// overwhelming. Hovever, in addition to the basic plumbing shown in the example
+// above, you only need to understand the different metric types and their
+// vector versions for basic usage.
+//
+// Above, you have already touched the Counter and the Gauge. There are two more
+// advanced metric types: the Summary and Histogram. A more thorough description
+// of those four metric types can be found in the Prometheus docs:
+// https://prometheus.io/docs/concepts/metric_types/
+//
+// A fifth "type" of metric is Untyped. It behaves like a Gauge, but signals the
+// Prometheus server not to assume anything about its type.
+//
+// In addition to the fundamental metric types Gauge, Counter, Summary,
+// Histogram, and Untyped, a very important part of the Prometheus data model is
+// the partitioning of samples along dimensions called labels, which results in
+// metric vectors. The fundamental types are GaugeVec, CounterVec, SummaryVec,
+// HistogramVec, and UntypedVec.
+//
+// While only the fundamental metric types implement the Metric interface, both
+// the metrics and their vector versions implement the Collector interface. A
+// Collector manages the collection of a number of Metrics, but for convenience,
+// a Metric can also “collect itself”. Note that Gauge, Counter, Summary,
+// Histogram, and Untyped are interfaces themselves while GaugeVec, CounterVec,
+// SummaryVec, HistogramVec, and UntypedVec are not.
+//
+// To create instances of Metrics and their vector versions, you need a suitable
+// …Opts struct, i.e. GaugeOpts, CounterOpts, SummaryOpts,
+// HistogramOpts, or UntypedOpts.
+//
+// Custom Collectors and constant Metrics
+//
+// While you could create your own implementations of Metric, most likely you
+// will only ever implement the Collector interface on your own. At a first
+// glance, a custom Collector seems handy to bundle Metrics for common
+// registration (with the prime example of the different metric vectors above,
+// which bundle all the metrics of the same name but with different labels).
+//
+// There is a more involved use case, too: If you already have metrics
+// available, created outside of the Prometheus context, you don't need the
+// interface of the various Metric types. You essentially want to mirror the
+// existing numbers into Prometheus Metrics during collection. An own
+// implementation of the Collector interface is perfect for that. You can create
+// Metric instances “on the fly” using NewConstMetric, NewConstHistogram, and
+// NewConstSummary (and their respective Must… versions). That will happen in
+// the Collect method. The Describe method has to return separate Desc
+// instances, representative of the “throw-away” metrics to be created
+// later. NewDesc comes in handy to create those Desc instances.
+//
+// The Collector example illustrates the use case. You can also look at the
+// source code of the processCollector (mirroring process metrics), the
+// goCollector (mirroring Go metrics), or the expvarCollector (mirroring expvar
+// metrics) as examples that are used in this package itself.
+//
+// If you just need to call a function to get a single float value to collect as
+// a metric, GaugeFunc, CounterFunc, or UntypedFunc might be interesting
+// shortcuts.
+//
+// Advanced Uses of the Registry
+//
+// While MustRegister is the by far most common way of registering a Collector,
+// sometimes you might want to handle the errors the registration might
+// cause. As suggested by the name, MustRegister panics if an error occurs. With
+// the Register function, the error is returned and can be handled.
+//
+// An error is returned if the registered Collector is incompatible or
+// inconsistent with already registered metrics. The registry aims for
+// consistency of the collected metrics according to the Prometheus data
+// model. Inconsistencies are ideally detected at registration time, not at
+// collect time. The former will usually be detected at start-up time of a
+// program, while the latter will only happen at scrape time, possibly not even
+// on the first scrape if the inconsistency only becomes relevant later. That is
+// the main reason why a Collector and a Metric have to describe themselves to
+// the registry.
+//
+// So far, everything we did operated on the so-called default registry, as it
+// can be found in the global DefaultRegistry variable. With NewRegistry, you
+// can create a custom registry, or you can even implement the Registerer or
+// Gatherer interfaces yourself. The methods Register and Unregister work in
+// the same way on a custom registry as the global functions Register and
+// Unregister on the default registry.
+//
+// There are a number of uses for custom registries: You can use registries
+// with special properties, see NewPedanticRegistry. You can avoid global state,
+// as it is imposed by the DefaultRegistry. You can use multiple registries at
+// the same time to expose different metrics in different ways. You can use
+// separate registries for testing purposes.
+//
+// Also note that the DefaultRegistry comes registered with a Collector for Go
+// runtime metrics (via NewGoCollector) and a Collector for process metrics (via
+// NewProcessCollector). With a custom registry, you are in control and decide
+// yourself about the Collectors to register.
+//
+// HTTP Exposition
+//
+// The Registry implements the Gatherer interface. The caller of the Gather
+// method can then expose the gathered metrics in some way. Usually, the metrics
+// are served via HTTP on the /metrics endpoint. That's happening in the example
+// above. The tools to expose metrics via HTTP are in the promhttp
+// sub-package. (The top-level functions in the prometheus package are
+// deprecated.)
+//
+// Pushing to the Pushgateway
+//
+// Function for pushing to the Pushgateway can be found in the push sub-package.
+//
+// Other Means of Exposition
+//
+// More ways of exposing metrics can easily be added. Sending metrics to
+// Graphite would be an example that will soon be implemented.
+package prometheus