aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/unicode/norm/composition.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/text/unicode/norm/composition.go')
-rw-r--r--vendor/golang.org/x/text/unicode/norm/composition.go512
1 files changed, 0 insertions, 512 deletions
diff --git a/vendor/golang.org/x/text/unicode/norm/composition.go b/vendor/golang.org/x/text/unicode/norm/composition.go
deleted file mode 100644
index e2087bc..0000000
--- a/vendor/golang.org/x/text/unicode/norm/composition.go
+++ /dev/null
@@ -1,512 +0,0 @@
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package norm
-
-import "unicode/utf8"
-
-const (
- maxNonStarters = 30
- // The maximum number of characters needed for a buffer is
- // maxNonStarters + 1 for the starter + 1 for the GCJ
- maxBufferSize = maxNonStarters + 2
- maxNFCExpansion = 3 // NFC(0x1D160)
- maxNFKCExpansion = 18 // NFKC(0xFDFA)
-
- maxByteBufferSize = utf8.UTFMax * maxBufferSize // 128
-)
-
-// ssState is used for reporting the segment state after inserting a rune.
-// It is returned by streamSafe.next.
-type ssState int
-
-const (
- // Indicates a rune was successfully added to the segment.
- ssSuccess ssState = iota
- // Indicates a rune starts a new segment and should not be added.
- ssStarter
- // Indicates a rune caused a segment overflow and a CGJ should be inserted.
- ssOverflow
-)
-
-// streamSafe implements the policy of when a CGJ should be inserted.
-type streamSafe uint8
-
-// first inserts the first rune of a segment. It is a faster version of next if
-// it is known p represents the first rune in a segment.
-func (ss *streamSafe) first(p Properties) {
- *ss = streamSafe(p.nTrailingNonStarters())
-}
-
-// insert returns a ssState value to indicate whether a rune represented by p
-// can be inserted.
-func (ss *streamSafe) next(p Properties) ssState {
- if *ss > maxNonStarters {
- panic("streamSafe was not reset")
- }
- n := p.nLeadingNonStarters()
- if *ss += streamSafe(n); *ss > maxNonStarters {
- *ss = 0
- return ssOverflow
- }
- // The Stream-Safe Text Processing prescribes that the counting can stop
- // as soon as a starter is encountered. However, there are some starters,
- // like Jamo V and T, that can combine with other runes, leaving their
- // successive non-starters appended to the previous, possibly causing an
- // overflow. We will therefore consider any rune with a non-zero nLead to
- // be a non-starter. Note that it always hold that if nLead > 0 then
- // nLead == nTrail.
- if n == 0 {
- *ss = streamSafe(p.nTrailingNonStarters())
- return ssStarter
- }
- return ssSuccess
-}
-
-// backwards is used for checking for overflow and segment starts
-// when traversing a string backwards. Users do not need to call first
-// for the first rune. The state of the streamSafe retains the count of
-// the non-starters loaded.
-func (ss *streamSafe) backwards(p Properties) ssState {
- if *ss > maxNonStarters {
- panic("streamSafe was not reset")
- }
- c := *ss + streamSafe(p.nTrailingNonStarters())
- if c > maxNonStarters {
- return ssOverflow
- }
- *ss = c
- if p.nLeadingNonStarters() == 0 {
- return ssStarter
- }
- return ssSuccess
-}
-
-func (ss streamSafe) isMax() bool {
- return ss == maxNonStarters
-}
-
-// GraphemeJoiner is inserted after maxNonStarters non-starter runes.
-const GraphemeJoiner = "\u034F"
-
-// reorderBuffer is used to normalize a single segment. Characters inserted with
-// insert are decomposed and reordered based on CCC. The compose method can
-// be used to recombine characters. Note that the byte buffer does not hold
-// the UTF-8 characters in order. Only the rune array is maintained in sorted
-// order. flush writes the resulting segment to a byte array.
-type reorderBuffer struct {
- rune [maxBufferSize]Properties // Per character info.
- byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
- nbyte uint8 // Number or bytes.
- ss streamSafe // For limiting length of non-starter sequence.
- nrune int // Number of runeInfos.
- f formInfo
-
- src input
- nsrc int
- tmpBytes input
-
- out []byte
- flushF func(*reorderBuffer) bool
-}
-
-func (rb *reorderBuffer) init(f Form, src []byte) {
- rb.f = *formTable[f]
- rb.src.setBytes(src)
- rb.nsrc = len(src)
- rb.ss = 0
-}
-
-func (rb *reorderBuffer) initString(f Form, src string) {
- rb.f = *formTable[f]
- rb.src.setString(src)
- rb.nsrc = len(src)
- rb.ss = 0
-}
-
-func (rb *reorderBuffer) setFlusher(out []byte, f func(*reorderBuffer) bool) {
- rb.out = out
- rb.flushF = f
-}
-
-// reset discards all characters from the buffer.
-func (rb *reorderBuffer) reset() {
- rb.nrune = 0
- rb.nbyte = 0
-}
-
-func (rb *reorderBuffer) doFlush() bool {
- if rb.f.composing {
- rb.compose()
- }
- res := rb.flushF(rb)
- rb.reset()
- return res
-}
-
-// appendFlush appends the normalized segment to rb.out.
-func appendFlush(rb *reorderBuffer) bool {
- for i := 0; i < rb.nrune; i++ {
- start := rb.rune[i].pos
- end := start + rb.rune[i].size
- rb.out = append(rb.out, rb.byte[start:end]...)
- }
- return true
-}
-
-// flush appends the normalized segment to out and resets rb.
-func (rb *reorderBuffer) flush(out []byte) []byte {
- for i := 0; i < rb.nrune; i++ {
- start := rb.rune[i].pos
- end := start + rb.rune[i].size
- out = append(out, rb.byte[start:end]...)
- }
- rb.reset()
- return out
-}
-
-// flushCopy copies the normalized segment to buf and resets rb.
-// It returns the number of bytes written to buf.
-func (rb *reorderBuffer) flushCopy(buf []byte) int {
- p := 0
- for i := 0; i < rb.nrune; i++ {
- runep := rb.rune[i]
- p += copy(buf[p:], rb.byte[runep.pos:runep.pos+runep.size])
- }
- rb.reset()
- return p
-}
-
-// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
-// It returns false if the buffer is not large enough to hold the rune.
-// It is used internally by insert and insertString only.
-func (rb *reorderBuffer) insertOrdered(info Properties) {
- n := rb.nrune
- b := rb.rune[:]
- cc := info.ccc
- if cc > 0 {
- // Find insertion position + move elements to make room.
- for ; n > 0; n-- {
- if b[n-1].ccc <= cc {
- break
- }
- b[n] = b[n-1]
- }
- }
- rb.nrune += 1
- pos := uint8(rb.nbyte)
- rb.nbyte += utf8.UTFMax
- info.pos = pos
- b[n] = info
-}
-
-// insertErr is an error code returned by insert. Using this type instead
-// of error improves performance up to 20% for many of the benchmarks.
-type insertErr int
-
-const (
- iSuccess insertErr = -iota
- iShortDst
- iShortSrc
-)
-
-// insertFlush inserts the given rune in the buffer ordered by CCC.
-// If a decomposition with multiple segments are encountered, they leading
-// ones are flushed.
-// It returns a non-zero error code if the rune was not inserted.
-func (rb *reorderBuffer) insertFlush(src input, i int, info Properties) insertErr {
- if rune := src.hangul(i); rune != 0 {
- rb.decomposeHangul(rune)
- return iSuccess
- }
- if info.hasDecomposition() {
- return rb.insertDecomposed(info.Decomposition())
- }
- rb.insertSingle(src, i, info)
- return iSuccess
-}
-
-// insertUnsafe inserts the given rune in the buffer ordered by CCC.
-// It is assumed there is sufficient space to hold the runes. It is the
-// responsibility of the caller to ensure this. This can be done by checking
-// the state returned by the streamSafe type.
-func (rb *reorderBuffer) insertUnsafe(src input, i int, info Properties) {
- if rune := src.hangul(i); rune != 0 {
- rb.decomposeHangul(rune)
- }
- if info.hasDecomposition() {
- // TODO: inline.
- rb.insertDecomposed(info.Decomposition())
- } else {
- rb.insertSingle(src, i, info)
- }
-}
-
-// insertDecomposed inserts an entry in to the reorderBuffer for each rune
-// in dcomp. dcomp must be a sequence of decomposed UTF-8-encoded runes.
-// It flushes the buffer on each new segment start.
-func (rb *reorderBuffer) insertDecomposed(dcomp []byte) insertErr {
- rb.tmpBytes.setBytes(dcomp)
- // As the streamSafe accounting already handles the counting for modifiers,
- // we don't have to call next. However, we do need to keep the accounting
- // intact when flushing the buffer.
- for i := 0; i < len(dcomp); {
- info := rb.f.info(rb.tmpBytes, i)
- if info.BoundaryBefore() && rb.nrune > 0 && !rb.doFlush() {
- return iShortDst
- }
- i += copy(rb.byte[rb.nbyte:], dcomp[i:i+int(info.size)])
- rb.insertOrdered(info)
- }
- return iSuccess
-}
-
-// insertSingle inserts an entry in the reorderBuffer for the rune at
-// position i. info is the runeInfo for the rune at position i.
-func (rb *reorderBuffer) insertSingle(src input, i int, info Properties) {
- src.copySlice(rb.byte[rb.nbyte:], i, i+int(info.size))
- rb.insertOrdered(info)
-}
-
-// insertCGJ inserts a Combining Grapheme Joiner (0x034f) into rb.
-func (rb *reorderBuffer) insertCGJ() {
- rb.insertSingle(input{str: GraphemeJoiner}, 0, Properties{size: uint8(len(GraphemeJoiner))})
-}
-
-// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
-func (rb *reorderBuffer) appendRune(r rune) {
- bn := rb.nbyte
- sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
- rb.nbyte += utf8.UTFMax
- rb.rune[rb.nrune] = Properties{pos: bn, size: uint8(sz)}
- rb.nrune++
-}
-
-// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
-func (rb *reorderBuffer) assignRune(pos int, r rune) {
- bn := rb.rune[pos].pos
- sz := utf8.EncodeRune(rb.byte[bn:], rune(r))
- rb.rune[pos] = Properties{pos: bn, size: uint8(sz)}
-}
-
-// runeAt returns the rune at position n. It is used for Hangul and recomposition.
-func (rb *reorderBuffer) runeAt(n int) rune {
- inf := rb.rune[n]
- r, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
- return r
-}
-
-// bytesAt returns the UTF-8 encoding of the rune at position n.
-// It is used for Hangul and recomposition.
-func (rb *reorderBuffer) bytesAt(n int) []byte {
- inf := rb.rune[n]
- return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
-}
-
-// For Hangul we combine algorithmically, instead of using tables.
-const (
- hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
- hangulBase0 = 0xEA
- hangulBase1 = 0xB0
- hangulBase2 = 0x80
-
- hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
- hangulEnd0 = 0xED
- hangulEnd1 = 0x9E
- hangulEnd2 = 0xA4
-
- jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
- jamoLBase0 = 0xE1
- jamoLBase1 = 0x84
- jamoLEnd = 0x1113
- jamoVBase = 0x1161
- jamoVEnd = 0x1176
- jamoTBase = 0x11A7
- jamoTEnd = 0x11C3
-
- jamoTCount = 28
- jamoVCount = 21
- jamoVTCount = 21 * 28
- jamoLVTCount = 19 * 21 * 28
-)
-
-const hangulUTF8Size = 3
-
-func isHangul(b []byte) bool {
- if len(b) < hangulUTF8Size {
- return false
- }
- b0 := b[0]
- if b0 < hangulBase0 {
- return false
- }
- b1 := b[1]
- switch {
- case b0 == hangulBase0:
- return b1 >= hangulBase1
- case b0 < hangulEnd0:
- return true
- case b0 > hangulEnd0:
- return false
- case b1 < hangulEnd1:
- return true
- }
- return b1 == hangulEnd1 && b[2] < hangulEnd2
-}
-
-func isHangulString(b string) bool {
- if len(b) < hangulUTF8Size {
- return false
- }
- b0 := b[0]
- if b0 < hangulBase0 {
- return false
- }
- b1 := b[1]
- switch {
- case b0 == hangulBase0:
- return b1 >= hangulBase1
- case b0 < hangulEnd0:
- return true
- case b0 > hangulEnd0:
- return false
- case b1 < hangulEnd1:
- return true
- }
- return b1 == hangulEnd1 && b[2] < hangulEnd2
-}
-
-// Caller must ensure len(b) >= 2.
-func isJamoVT(b []byte) bool {
- // True if (rune & 0xff00) == jamoLBase
- return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
-}
-
-func isHangulWithoutJamoT(b []byte) bool {
- c, _ := utf8.DecodeRune(b)
- c -= hangulBase
- return c < jamoLVTCount && c%jamoTCount == 0
-}
-
-// decomposeHangul writes the decomposed Hangul to buf and returns the number
-// of bytes written. len(buf) should be at least 9.
-func decomposeHangul(buf []byte, r rune) int {
- const JamoUTF8Len = 3
- r -= hangulBase
- x := r % jamoTCount
- r /= jamoTCount
- utf8.EncodeRune(buf, jamoLBase+r/jamoVCount)
- utf8.EncodeRune(buf[JamoUTF8Len:], jamoVBase+r%jamoVCount)
- if x != 0 {
- utf8.EncodeRune(buf[2*JamoUTF8Len:], jamoTBase+x)
- return 3 * JamoUTF8Len
- }
- return 2 * JamoUTF8Len
-}
-
-// decomposeHangul algorithmically decomposes a Hangul rune into
-// its Jamo components.
-// See https://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
-func (rb *reorderBuffer) decomposeHangul(r rune) {
- r -= hangulBase
- x := r % jamoTCount
- r /= jamoTCount
- rb.appendRune(jamoLBase + r/jamoVCount)
- rb.appendRune(jamoVBase + r%jamoVCount)
- if x != 0 {
- rb.appendRune(jamoTBase + x)
- }
-}
-
-// combineHangul algorithmically combines Jamo character components into Hangul.
-// See https://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
-func (rb *reorderBuffer) combineHangul(s, i, k int) {
- b := rb.rune[:]
- bn := rb.nrune
- for ; i < bn; i++ {
- cccB := b[k-1].ccc
- cccC := b[i].ccc
- if cccB == 0 {
- s = k - 1
- }
- if s != k-1 && cccB >= cccC {
- // b[i] is blocked by greater-equal cccX below it
- b[k] = b[i]
- k++
- } else {
- l := rb.runeAt(s) // also used to compare to hangulBase
- v := rb.runeAt(i) // also used to compare to jamoT
- switch {
- case jamoLBase <= l && l < jamoLEnd &&
- jamoVBase <= v && v < jamoVEnd:
- // 11xx plus 116x to LV
- rb.assignRune(s, hangulBase+
- (l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
- case hangulBase <= l && l < hangulEnd &&
- jamoTBase < v && v < jamoTEnd &&
- ((l-hangulBase)%jamoTCount) == 0:
- // ACxx plus 11Ax to LVT
- rb.assignRune(s, l+v-jamoTBase)
- default:
- b[k] = b[i]
- k++
- }
- }
- }
- rb.nrune = k
-}
-
-// compose recombines the runes in the buffer.
-// It should only be used to recompose a single segment, as it will not
-// handle alternations between Hangul and non-Hangul characters correctly.
-func (rb *reorderBuffer) compose() {
- // Lazily load the map used by the combine func below, but do
- // it outside of the loop.
- recompMapOnce.Do(buildRecompMap)
-
- // UAX #15, section X5 , including Corrigendum #5
- // "In any character sequence beginning with starter S, a character C is
- // blocked from S if and only if there is some character B between S
- // and C, and either B is a starter or it has the same or higher
- // combining class as C."
- bn := rb.nrune
- if bn == 0 {
- return
- }
- k := 1
- b := rb.rune[:]
- for s, i := 0, 1; i < bn; i++ {
- if isJamoVT(rb.bytesAt(i)) {
- // Redo from start in Hangul mode. Necessary to support
- // U+320E..U+321E in NFKC mode.
- rb.combineHangul(s, i, k)
- return
- }
- ii := b[i]
- // We can only use combineForward as a filter if we later
- // get the info for the combined character. This is more
- // expensive than using the filter. Using combinesBackward()
- // is safe.
- if ii.combinesBackward() {
- cccB := b[k-1].ccc
- cccC := ii.ccc
- blocked := false // b[i] blocked by starter or greater or equal CCC?
- if cccB == 0 {
- s = k - 1
- } else {
- blocked = s != k-1 && cccB >= cccC
- }
- if !blocked {
- combined := combine(rb.runeAt(s), rb.runeAt(i))
- if combined != 0 {
- rb.assignRune(s, combined)
- continue
- }
- }
- }
- b[k] = b[i]
- k++
- }
- rb.nrune = k
-}