From 649bf79117e30895108b7782d62daafd07bc5e6e Mon Sep 17 00:00:00 2001 From: Niall Sheridan Date: Sun, 22 May 2016 01:23:33 +0100 Subject: Use govendor --- vendor/github.com/hashicorp/hcl/decoder.go | 654 +++++++++++++++++++++++++++++ 1 file changed, 654 insertions(+) create mode 100644 vendor/github.com/hashicorp/hcl/decoder.go (limited to 'vendor/github.com/hashicorp/hcl/decoder.go') diff --git a/vendor/github.com/hashicorp/hcl/decoder.go b/vendor/github.com/hashicorp/hcl/decoder.go new file mode 100644 index 0000000..02888d2 --- /dev/null +++ b/vendor/github.com/hashicorp/hcl/decoder.go @@ -0,0 +1,654 @@ +package hcl + +import ( + "errors" + "fmt" + "reflect" + "sort" + "strconv" + "strings" + + "github.com/hashicorp/hcl/hcl/ast" + "github.com/hashicorp/hcl/hcl/parser" + "github.com/hashicorp/hcl/hcl/token" +) + +// This is the tag to use with structures to have settings for HCL +const tagName = "hcl" + +var ( + // nodeType holds a reference to the type of ast.Node + nodeType reflect.Type = findNodeType() +) + +// Unmarshal accepts a byte slice as input and writes the +// data to the value pointed to by v. +func Unmarshal(bs []byte, v interface{}) error { + root, err := parse(bs) + if err != nil { + return err + } + + return DecodeObject(v, root) +} + +// Decode reads the given input and decodes it into the structure +// given by `out`. +func Decode(out interface{}, in string) error { + obj, err := Parse(in) + if err != nil { + return err + } + + return DecodeObject(out, obj) +} + +// DecodeObject is a lower-level version of Decode. It decodes a +// raw Object into the given output. +func DecodeObject(out interface{}, n ast.Node) error { + val := reflect.ValueOf(out) + if val.Kind() != reflect.Ptr { + return errors.New("result must be a pointer") + } + + // If we have the file, we really decode the root node + if f, ok := n.(*ast.File); ok { + n = f.Node + } + + var d decoder + return d.decode("root", n, val.Elem()) +} + +type decoder struct { + stack []reflect.Kind +} + +func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error { + k := result + + // If we have an interface with a valid value, we use that + // for the check. + if result.Kind() == reflect.Interface { + elem := result.Elem() + if elem.IsValid() { + k = elem + } + } + + // Push current onto stack unless it is an interface. + if k.Kind() != reflect.Interface { + d.stack = append(d.stack, k.Kind()) + + // Schedule a pop + defer func() { + d.stack = d.stack[:len(d.stack)-1] + }() + } + + switch k.Kind() { + case reflect.Bool: + return d.decodeBool(name, node, result) + case reflect.Float64: + return d.decodeFloat(name, node, result) + case reflect.Int: + return d.decodeInt(name, node, result) + case reflect.Interface: + // When we see an interface, we make our own thing + return d.decodeInterface(name, node, result) + case reflect.Map: + return d.decodeMap(name, node, result) + case reflect.Ptr: + return d.decodePtr(name, node, result) + case reflect.Slice: + return d.decodeSlice(name, node, result) + case reflect.String: + return d.decodeString(name, node, result) + case reflect.Struct: + return d.decodeStruct(name, node, result) + default: + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unknown kind to decode into: %s", name, k.Kind()), + } + } +} + +func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error { + switch n := node.(type) { + case *ast.LiteralType: + if n.Token.Type == token.BOOL { + v, err := strconv.ParseBool(n.Token.Text) + if err != nil { + return err + } + + result.Set(reflect.ValueOf(v)) + return nil + } + } + + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unknown type %T", name, node), + } +} + +func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error { + switch n := node.(type) { + case *ast.LiteralType: + if n.Token.Type == token.FLOAT { + v, err := strconv.ParseFloat(n.Token.Text, 64) + if err != nil { + return err + } + + result.Set(reflect.ValueOf(v)) + return nil + } + } + + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unknown type %T", name, node), + } +} + +func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error { + switch n := node.(type) { + case *ast.LiteralType: + switch n.Token.Type { + case token.NUMBER: + v, err := strconv.ParseInt(n.Token.Text, 0, 0) + if err != nil { + return err + } + + result.Set(reflect.ValueOf(int(v))) + return nil + case token.STRING: + v, err := strconv.ParseInt(n.Token.Value().(string), 0, 0) + if err != nil { + return err + } + + result.Set(reflect.ValueOf(int(v))) + return nil + } + } + + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unknown type %T", name, node), + } +} + +func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error { + // When we see an ast.Node, we retain the value to enable deferred decoding. + // Very useful in situations where we want to preserve ast.Node information + // like Pos + if result.Type() == nodeType && result.CanSet() { + result.Set(reflect.ValueOf(node)) + return nil + } + + var set reflect.Value + redecode := true + + // For testing types, ObjectType should just be treated as a list. We + // set this to a temporary var because we want to pass in the real node. + testNode := node + if ot, ok := node.(*ast.ObjectType); ok { + testNode = ot.List + } + + switch n := testNode.(type) { + case *ast.ObjectList: + // If we're at the root or we're directly within a slice, then we + // decode objects into map[string]interface{}, otherwise we decode + // them into lists. + if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice { + var temp map[string]interface{} + tempVal := reflect.ValueOf(temp) + result := reflect.MakeMap( + reflect.MapOf( + reflect.TypeOf(""), + tempVal.Type().Elem())) + + set = result + } else { + var temp []map[string]interface{} + tempVal := reflect.ValueOf(temp) + result := reflect.MakeSlice( + reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items)) + set = result + } + case *ast.ObjectType: + // If we're at the root or we're directly within a slice, then we + // decode objects into map[string]interface{}, otherwise we decode + // them into lists. + if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice { + var temp map[string]interface{} + tempVal := reflect.ValueOf(temp) + result := reflect.MakeMap( + reflect.MapOf( + reflect.TypeOf(""), + tempVal.Type().Elem())) + + set = result + } else { + var temp []map[string]interface{} + tempVal := reflect.ValueOf(temp) + result := reflect.MakeSlice( + reflect.SliceOf(tempVal.Type().Elem()), 0, 1) + set = result + } + case *ast.ListType: + var temp []interface{} + tempVal := reflect.ValueOf(temp) + result := reflect.MakeSlice( + reflect.SliceOf(tempVal.Type().Elem()), 0, 0) + set = result + case *ast.LiteralType: + switch n.Token.Type { + case token.BOOL: + var result bool + set = reflect.Indirect(reflect.New(reflect.TypeOf(result))) + case token.FLOAT: + var result float64 + set = reflect.Indirect(reflect.New(reflect.TypeOf(result))) + case token.NUMBER: + var result int + set = reflect.Indirect(reflect.New(reflect.TypeOf(result))) + case token.STRING, token.HEREDOC: + set = reflect.Indirect(reflect.New(reflect.TypeOf(""))) + default: + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: cannot decode into interface: %T", name, node), + } + } + default: + return fmt.Errorf( + "%s: cannot decode into interface: %T", + name, node) + } + + // Set the result to what its supposed to be, then reset + // result so we don't reflect into this method anymore. + result.Set(set) + + if redecode { + // Revisit the node so that we can use the newly instantiated + // thing and populate it. + if err := d.decode(name, node, result); err != nil { + return err + } + } + + return nil +} + +func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error { + if item, ok := node.(*ast.ObjectItem); ok { + node = &ast.ObjectList{Items: []*ast.ObjectItem{item}} + } + + if ot, ok := node.(*ast.ObjectType); ok { + node = ot.List + } + + n, ok := node.(*ast.ObjectList) + if !ok { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: not an object type for map (%T)", name, node), + } + } + + // If we have an interface, then we can address the interface, + // but not the slice itself, so get the element but set the interface + set := result + if result.Kind() == reflect.Interface { + result = result.Elem() + } + + resultType := result.Type() + resultElemType := resultType.Elem() + resultKeyType := resultType.Key() + if resultKeyType.Kind() != reflect.String { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: map must have string keys", name), + } + } + + // Make a map if it is nil + resultMap := result + if result.IsNil() { + resultMap = reflect.MakeMap( + reflect.MapOf(resultKeyType, resultElemType)) + } + + // Go through each element and decode it. + done := make(map[string]struct{}) + for _, item := range n.Items { + if item.Val == nil { + continue + } + + // github.com/hashicorp/terraform/issue/5740 + if len(item.Keys) == 0 { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: map must have string keys", name), + } + } + + // Get the key we're dealing with, which is the first item + keyStr := item.Keys[0].Token.Value().(string) + + // If we've already processed this key, then ignore it + if _, ok := done[keyStr]; ok { + continue + } + + // Determine the value. If we have more than one key, then we + // get the objectlist of only these keys. + itemVal := item.Val + if len(item.Keys) > 1 { + itemVal = n.Filter(keyStr) + done[keyStr] = struct{}{} + } + + // Make the field name + fieldName := fmt.Sprintf("%s.%s", name, keyStr) + + // Get the key/value as reflection values + key := reflect.ValueOf(keyStr) + val := reflect.Indirect(reflect.New(resultElemType)) + + // If we have a pre-existing value in the map, use that + oldVal := resultMap.MapIndex(key) + if oldVal.IsValid() { + val.Set(oldVal) + } + + // Decode! + if err := d.decode(fieldName, itemVal, val); err != nil { + return err + } + + // Set the value on the map + resultMap.SetMapIndex(key, val) + } + + // Set the final map if we can + set.Set(resultMap) + return nil +} + +func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error { + // Create an element of the concrete (non pointer) type and decode + // into that. Then set the value of the pointer to this type. + resultType := result.Type() + resultElemType := resultType.Elem() + val := reflect.New(resultElemType) + if err := d.decode(name, node, reflect.Indirect(val)); err != nil { + return err + } + + result.Set(val) + return nil +} + +func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error { + // If we have an interface, then we can address the interface, + // but not the slice itself, so get the element but set the interface + set := result + if result.Kind() == reflect.Interface { + result = result.Elem() + } + + // Create the slice if it isn't nil + resultType := result.Type() + resultElemType := resultType.Elem() + if result.IsNil() { + resultSliceType := reflect.SliceOf(resultElemType) + result = reflect.MakeSlice( + resultSliceType, 0, 0) + } + + // Figure out the items we'll be copying into the slice + var items []ast.Node + switch n := node.(type) { + case *ast.ObjectList: + items = make([]ast.Node, len(n.Items)) + for i, item := range n.Items { + items[i] = item + } + case *ast.ObjectType: + items = []ast.Node{n} + case *ast.ListType: + items = n.List + default: + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("unknown slice type: %T", node), + } + } + + for i, item := range items { + fieldName := fmt.Sprintf("%s[%d]", name, i) + + // Decode + val := reflect.Indirect(reflect.New(resultElemType)) + if err := d.decode(fieldName, item, val); err != nil { + return err + } + + // Append it onto the slice + result = reflect.Append(result, val) + } + + set.Set(result) + return nil +} + +func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error { + switch n := node.(type) { + case *ast.LiteralType: + switch n.Token.Type { + case token.NUMBER: + result.Set(reflect.ValueOf(n.Token.Text).Convert(result.Type())) + return nil + case token.STRING, token.HEREDOC: + result.Set(reflect.ValueOf(n.Token.Value()).Convert(result.Type())) + return nil + } + } + + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unknown type for string %T", name, node), + } +} + +func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error { + var item *ast.ObjectItem + if it, ok := node.(*ast.ObjectItem); ok { + item = it + node = it.Val + } + + if ot, ok := node.(*ast.ObjectType); ok { + node = ot.List + } + + // Handle the special case where the object itself is a literal. Previously + // the yacc parser would always ensure top-level elements were arrays. The new + // parser does not make the same guarantees, thus we need to convert any + // top-level literal elements into a list. + if _, ok := node.(*ast.LiteralType); ok { + node = &ast.ObjectList{Items: []*ast.ObjectItem{item}} + } + + list, ok := node.(*ast.ObjectList) + if !ok { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: not an object type for struct (%T)", name, node), + } + } + + // This slice will keep track of all the structs we'll be decoding. + // There can be more than one struct if there are embedded structs + // that are squashed. + structs := make([]reflect.Value, 1, 5) + structs[0] = result + + // Compile the list of all the fields that we're going to be decoding + // from all the structs. + fields := make(map[*reflect.StructField]reflect.Value) + for len(structs) > 0 { + structVal := structs[0] + structs = structs[1:] + + structType := structVal.Type() + for i := 0; i < structType.NumField(); i++ { + fieldType := structType.Field(i) + + if fieldType.Anonymous { + fieldKind := fieldType.Type.Kind() + if fieldKind != reflect.Struct { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: unsupported type to struct: %s", + fieldType.Name, fieldKind), + } + } + + // We have an embedded field. We "squash" the fields down + // if specified in the tag. + squash := false + tagParts := strings.Split(fieldType.Tag.Get(tagName), ",") + for _, tag := range tagParts[1:] { + if tag == "squash" { + squash = true + break + } + } + + if squash { + structs = append( + structs, result.FieldByName(fieldType.Name)) + continue + } + } + + // Normal struct field, store it away + fields[&fieldType] = structVal.Field(i) + } + } + + usedKeys := make(map[string]struct{}) + decodedFields := make([]string, 0, len(fields)) + decodedFieldsVal := make([]reflect.Value, 0) + unusedKeysVal := make([]reflect.Value, 0) + for fieldType, field := range fields { + if !field.IsValid() { + // This should never happen + panic("field is not valid") + } + + // If we can't set the field, then it is unexported or something, + // and we just continue onwards. + if !field.CanSet() { + continue + } + + fieldName := fieldType.Name + + tagValue := fieldType.Tag.Get(tagName) + tagParts := strings.SplitN(tagValue, ",", 2) + if len(tagParts) >= 2 { + switch tagParts[1] { + case "decodedFields": + decodedFieldsVal = append(decodedFieldsVal, field) + continue + case "key": + if item == nil { + return &parser.PosError{ + Pos: node.Pos(), + Err: fmt.Errorf("%s: %s asked for 'key', impossible", + name, fieldName), + } + } + + field.SetString(item.Keys[0].Token.Value().(string)) + continue + case "unusedKeys": + unusedKeysVal = append(unusedKeysVal, field) + continue + } + } + + if tagParts[0] != "" { + fieldName = tagParts[0] + } + + // Determine the element we'll use to decode. If it is a single + // match (only object with the field), then we decode it exactly. + // If it is a prefix match, then we decode the matches. + filter := list.Filter(fieldName) + prefixMatches := filter.Children() + matches := filter.Elem() + if len(matches.Items) == 0 && len(prefixMatches.Items) == 0 { + continue + } + + // Track the used key + usedKeys[fieldName] = struct{}{} + + // Create the field name and decode. We range over the elements + // because we actually want the value. + fieldName = fmt.Sprintf("%s.%s", name, fieldName) + if len(prefixMatches.Items) > 0 { + if err := d.decode(fieldName, prefixMatches, field); err != nil { + return err + } + } + for _, match := range matches.Items { + var decodeNode ast.Node = match.Val + if ot, ok := decodeNode.(*ast.ObjectType); ok { + decodeNode = &ast.ObjectList{Items: ot.List.Items} + } + + if err := d.decode(fieldName, decodeNode, field); err != nil { + return err + } + } + + decodedFields = append(decodedFields, fieldType.Name) + } + + if len(decodedFieldsVal) > 0 { + // Sort it so that it is deterministic + sort.Strings(decodedFields) + + for _, v := range decodedFieldsVal { + v.Set(reflect.ValueOf(decodedFields)) + } + } + + return nil +} + +// findNodeType returns the type of ast.Node +func findNodeType() reflect.Type { + var nodeContainer struct { + Node ast.Node + } + value := reflect.ValueOf(nodeContainer).FieldByName("Node") + return value.Type() +} -- cgit v1.2.3