// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build !appengine // +build gc // +build !noasm #include "textflag.h" // The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a // Go toolchain regression. See https://github.com/golang/go/issues/15426 and // https://github.com/golang/snappy/issues/29 // // As a workaround, the package was built with a known good assembler, and // those instructions were disassembled by "objdump -d" to yield the // 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15 // style comments, in AT&T asm syntax. Note that rsp here is a physical // register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm). // The instructions were then encoded as "BYTE $0x.." sequences, which assemble // fine on Go 1.6. // The asm code generally follows the pure Go code in encode_other.go, except // where marked with a "!!!". // ---------------------------------------------------------------------------- // func emitLiteral(dst, lit []byte) int // // All local variables fit into registers. The register allocation: // - AX len(lit) // - BX n // - DX return value // - DI &dst[i] // - R10 &lit[0] // // The 24 bytes of stack space is to call runtime·memmove. // // The unusual register allocation of local variables, such as R10 for the // source pointer, matches the allocation used at the call site in encodeBlock, // which makes it easier to manually inline this function. TEXT ·emitLiteral(SB), NOSPLIT, $24-56 MOVQ dst_base+0(FP), DI MOVQ lit_base+24(FP), R10 MOVQ lit_len+32(FP), AX MOVQ AX, DX MOVL AX, BX SUBL $1, BX CMPL BX, $60 JLT oneByte CMPL BX, $256 JLT twoBytes threeBytes: MOVB $0xf4, 0(DI) MOVW BX, 1(DI) ADDQ $3, DI ADDQ $3, DX JMP memmove twoBytes: MOVB $0xf0, 0(DI) MOVB BX, 1(DI) ADDQ $2, DI ADDQ $2, DX JMP memmove oneByte: SHLB $2, BX MOVB BX, 0(DI) ADDQ $1, DI ADDQ $1, DX memmove: MOVQ DX, ret+48(FP) // copy(dst[i:], lit) // // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push // DI, R10 and AX as arguments. MOVQ DI, 0(SP) MOVQ R10, 8(SP) MOVQ AX, 16(SP) CALL runtime·memmove(SB) RET // ---------------------------------------------------------------------------- // func emitCopy(dst []byte, offset, length int) int // // All local variables fit into registers. The register allocation: // - AX length // - SI &dst[0] // - DI &dst[i] // - R11 offset // // The unusual register allocation of local variables, such as R11 for the // offset, matches the allocation used at the call site in encodeBlock, which // makes it easier to manually inline this function. TEXT ·emitCopy(SB), NOSPLIT, $0-48 MOVQ dst_base+0(FP), DI MOVQ DI, SI MOVQ offset+24(FP), R11 MOVQ length+32(FP), AX loop0: // for length >= 68 { etc } CMPL AX, $68 JLT step1 // Emit a length 64 copy, encoded as 3 bytes. MOVB $0xfe, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI SUBL $64, AX JMP loop0 step1: // if length > 64 { etc } CMPL AX, $64 JLE step2 // Emit a length 60 copy, encoded as 3 bytes. MOVB $0xee, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI SUBL $60, AX step2: // if length >= 12 || offset >= 2048 { goto step3 } CMPL AX, $12 JGE step3 CMPL R11, $2048 JGE step3 // Emit the remaining copy, encoded as 2 bytes. MOVB R11, 1(DI) SHRL $8, R11 SHLB $5, R11 SUBB $4, AX SHLB $2, AX ORB AX, R11 ORB $1, R11 MOVB R11, 0(DI) ADDQ $2, DI // Return the number of bytes written. SUBQ SI, DI MOVQ DI, ret+40(FP) RET step3: // Emit the remaining copy, encoded as 3 bytes. SUBL $1, AX SHLB $2, AX ORB $2, AX MOVB AX, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI // Return the number of bytes written. SUBQ SI, DI MOVQ DI, ret+40(FP) RET // ---------------------------------------------------------------------------- // func extendMatch(src []byte, i, j int) int // // All local variables fit into registers. The register allocation: // - DX &src[0] // - SI &src[j] // - R13 &src[len(src) - 8] // - R14 &src[len(src)] // - R15 &src[i] // // The unusual register allocation of local variables, such as R15 for a source // pointer, matches the allocation used at the call site in encodeBlock, which // makes it easier to manually inline this function. TEXT ·extendMatch(SB), NOSPLIT, $0-48 MOVQ src_base+0(FP), DX MOVQ src_len+8(FP), R14 MOVQ i+24(FP), R15 MOVQ j+32(FP), SI ADDQ DX, R14 ADDQ DX, R15 ADDQ DX, SI MOVQ R14, R13 SUBQ $8, R13 cmp8: // As long as we are 8 or more bytes before the end of src, we can load and // compare 8 bytes at a time. If those 8 bytes are equal, repeat. CMPQ SI, R13 JA cmp1 MOVQ (R15), AX MOVQ (SI), BX CMPQ AX, BX JNE bsf ADDQ $8, R15 ADDQ $8, SI JMP cmp8 bsf: // If those 8 bytes were not equal, XOR the two 8 byte values, and return // the index of the first byte that differs. The BSF instruction finds the // least significant 1 bit, the amd64 architecture is little-endian, and // the shift by 3 converts a bit index to a byte index. XORQ AX, BX BSFQ BX, BX SHRQ $3, BX ADDQ BX, SI // Convert from &src[ret] to ret. SUBQ DX, SI MOVQ SI, ret+40(FP) RET cmp1: // In src's tail, compare 1 byte at a time. CMPQ SI, R14 JAE extendMatchEnd MOVB (R15), AX MOVB (SI), BX CMPB AX, BX JNE extendMatchEnd ADDQ $1, R15 ADDQ $1, SI JMP cmp1 extendMatchEnd: // Convert from &src[ret] to ret. SUBQ DX, SI MOVQ SI, ret+40(FP) RET // ---------------------------------------------------------------------------- // func encodeBlock(dst, src []byte) (d int) // // All local variables fit into registers, other than "var table". The register // allocation: // - AX . . // - BX . . // - CX 56 shift (note that amd64 shifts by non-immediates must use CX). // - DX 64 &src[0], tableSize // - SI 72 &src[s] // - DI 80 &dst[d] // - R9 88 sLimit // - R10 . &src[nextEmit] // - R11 96 prevHash, currHash, nextHash, offset // - R12 104 &src[base], skip // - R13 . &src[nextS], &src[len(src) - 8] // - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x // - R15 112 candidate // // The second column (56, 64, etc) is the stack offset to spill the registers // when calling other functions. We could pack this slightly tighter, but it's // simpler to have a dedicated spill map independent of the function called. // // "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An // extra 56 bytes, to call other functions, and an extra 64 bytes, to spill // local variables (registers) during calls gives 32768 + 56 + 64 = 32888. TEXT ·encodeBlock(SB), 0, $32888-56 MOVQ dst_base+0(FP), DI MOVQ src_base+24(FP), SI MOVQ src_len+32(FP), R14 // shift, tableSize := uint32(32-8), 1<<8 MOVQ $24, CX MOVQ $256, DX calcShift: // for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 { // shift-- // } CMPQ DX, $16384 JGE varTable CMPQ DX, R14 JGE varTable SUBQ $1, CX SHLQ $1, DX JMP calcShift varTable: // var table [maxTableSize]uint16 // // In the asm code, unlike the Go code, we can zero-initialize only the // first tableSize elements. Each uint16 element is 2 bytes and each MOVOU // writes 16 bytes, so we can do only tableSize/8 writes instead of the // 2048 writes that would zero-initialize all of table's 32768 bytes. SHRQ $3, DX LEAQ table-32768(SP), BX PXOR X0, X0 memclr: MOVOU X0, 0(BX) ADDQ $16, BX SUBQ $1, DX JNZ memclr // !!! DX = &src[0] MOVQ SI, DX // sLimit := len(src) - inputMargin MOVQ R14, R9 SUBQ $15, R9 // !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't // change for the rest of the function. MOVQ CX, 56(SP) MOVQ DX, 64(SP) MOVQ R9, 88(SP) // nextEmit := 0 MOVQ DX, R10 // s := 1 ADDQ $1, SI // nextHash := hash(load32(src, s), shift) MOVL 0(SI), R11 IMULL $0x1e35a7bd, R11 SHRL CX, R11 outer: // for { etc } // skip := 32 MOVQ $32, R12 // nextS := s MOVQ SI, R13 // candidate := 0 MOVQ $0, R15 inner0: // for { etc } // s := nextS MOVQ R13, SI // bytesBetweenHashLookups := skip >> 5 MOVQ R12, R14 SHRQ $5, R14 // nextS = s + bytesBetweenHashLookups ADDQ R14, R13 // skip += bytesBetweenHashLookups ADDQ R14, R12 // if nextS > sLimit { goto emitRemainder } MOVQ R13, AX SUBQ DX, AX CMPQ AX, R9 JA emitRemainder // candidate = int(table[nextHash]) // XXX: MOVWQZX table-32768(SP)(R11*2), R15 // XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15 BYTE $0x4e BYTE $0x0f BYTE $0xb7 BYTE $0x7c BYTE $0x5c BYTE $0x78 // table[nextHash] = uint16(s) MOVQ SI, AX SUBQ DX, AX // XXX: MOVW AX, table-32768(SP)(R11*2) // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2) BYTE $0x66 BYTE $0x42 BYTE $0x89 BYTE $0x44 BYTE $0x5c BYTE $0x78 // nextHash = hash(load32(src, nextS), shift) MOVL 0(R13), R11 IMULL $0x1e35a7bd, R11 SHRL CX, R11 // if load32(src, s) != load32(src, candidate) { continue } break MOVL 0(SI), AX MOVL (DX)(R15*1), BX CMPL AX, BX JNE inner0 fourByteMatch: // As per the encode_other.go code: // // A 4-byte match has been found. We'll later see etc. // !!! Jump to a fast path for short (<= 16 byte) literals. See the comment // on inputMargin in encode.go. MOVQ SI, AX SUBQ R10, AX CMPQ AX, $16 JLE emitLiteralFastPath // ---------------------------------------- // Begin inline of the emitLiteral call. // // d += emitLiteral(dst[d:], src[nextEmit:s]) MOVL AX, BX SUBL $1, BX CMPL BX, $60 JLT inlineEmitLiteralOneByte CMPL BX, $256 JLT inlineEmitLiteralTwoBytes inlineEmitLiteralThreeBytes: MOVB $0xf4, 0(DI) MOVW BX, 1(DI) ADDQ $3, DI JMP inlineEmitLiteralMemmove inlineEmitLiteralTwoBytes: MOVB $0xf0, 0(DI) MOVB BX, 1(DI) ADDQ $2, DI JMP inlineEmitLiteralMemmove inlineEmitLiteralOneByte: SHLB $2, BX MOVB BX, 0(DI) ADDQ $1, DI inlineEmitLiteralMemmove: // Spill local variables (registers) onto the stack; call; unspill. // // copy(dst[i:], lit) // // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push // DI, R10 and AX as arguments. MOVQ DI, 0(SP) MOVQ R10, 8(SP) MOVQ AX, 16(SP) ADDQ AX, DI // Finish the "d +=" part of "d += emitLiteral(etc)". MOVQ SI, 72(SP) MOVQ DI, 80(SP) MOVQ R15, 112(SP) CALL runtime·memmove(SB) MOVQ 56(SP), CX MOVQ 64(SP), DX MOVQ 72(SP), SI MOVQ 80(SP), DI MOVQ 88(SP), R9 MOVQ 112(SP), R15 JMP inner1 inlineEmitLiteralEnd: // End inline of the emitLiteral call. // ---------------------------------------- emitLiteralFastPath: // !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2". MOVB AX, BX SUBB $1, BX SHLB $2, BX MOVB BX, (DI) ADDQ $1, DI // !!! Implement the copy from lit to dst as a 16-byte load and store. // (Encode's documentation says that dst and src must not overlap.) // // This always copies 16 bytes, instead of only len(lit) bytes, but that's // OK. Subsequent iterations will fix up the overrun. // // Note that on amd64, it is legal and cheap to issue unaligned 8-byte or // 16-byte loads and stores. This technique probably wouldn't be as // effective on architectures that are fussier about alignment. MOVOU 0(R10), X0 MOVOU X0, 0(DI) ADDQ AX, DI inner1: // for { etc } // base := s MOVQ SI, R12 // !!! offset := base - candidate MOVQ R12, R11 SUBQ R15, R11 SUBQ DX, R11 // ---------------------------------------- // Begin inline of the extendMatch call. // // s = extendMatch(src, candidate+4, s+4) // !!! R14 = &src[len(src)] MOVQ src_len+32(FP), R14 ADDQ DX, R14 // !!! R13 = &src[len(src) - 8] MOVQ R14, R13 SUBQ $8, R13 // !!! R15 = &src[candidate + 4] ADDQ $4, R15 ADDQ DX, R15 // !!! s += 4 ADDQ $4, SI inlineExtendMatchCmp8: // As long as we are 8 or more bytes before the end of src, we can load and // compare 8 bytes at a time. If those 8 bytes are equal, repeat. CMPQ SI, R13 JA inlineExtendMatchCmp1 MOVQ (R15), AX MOVQ (SI), BX CMPQ AX, BX JNE inlineExtendMatchBSF ADDQ $8, R15 ADDQ $8, SI JMP inlineExtendMatchCmp8 inlineExtendMatchBSF: // If those 8 bytes were not equal, XOR the two 8 byte values, and return // the index of the first byte that differs. The BSF instruction finds the // least significant 1 bit, the amd64 architecture is little-endian, and // the shift by 3 converts a bit index to a byte index. XORQ AX, BX BSFQ BX, BX SHRQ $3, BX ADDQ BX, SI JMP inlineExtendMatchEnd inlineExtendMatchCmp1: // In src's tail, compare 1 byte at a time. CMPQ SI, R14 JAE inlineExtendMatchEnd MOVB (R15), AX MOVB (SI), BX CMPB AX, BX JNE inlineExtendMatchEnd ADDQ $1, R15 ADDQ $1, SI JMP inlineExtendMatchCmp1 inlineExtendMatchEnd: // End inline of the extendMatch call. // ---------------------------------------- // ---------------------------------------- // Begin inline of the emitCopy call. // // d += emitCopy(dst[d:], base-candidate, s-base) // !!! length := s - base MOVQ SI, AX SUBQ R12, AX inlineEmitCopyLoop0: // for length >= 68 { etc } CMPL AX, $68 JLT inlineEmitCopyStep1 // Emit a length 64 copy, encoded as 3 bytes. MOVB $0xfe, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI SUBL $64, AX JMP inlineEmitCopyLoop0 inlineEmitCopyStep1: // if length > 64 { etc } CMPL AX, $64 JLE inlineEmitCopyStep2 // Emit a length 60 copy, encoded as 3 bytes. MOVB $0xee, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI SUBL $60, AX inlineEmitCopyStep2: // if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 } CMPL AX, $12 JGE inlineEmitCopyStep3 CMPL R11, $2048 JGE inlineEmitCopyStep3 // Emit the remaining copy, encoded as 2 bytes. MOVB R11, 1(DI) SHRL $8, R11 SHLB $5, R11 SUBB $4, AX SHLB $2, AX ORB AX, R11 ORB $1, R11 MOVB R11, 0(DI) ADDQ $2, DI JMP inlineEmitCopyEnd inlineEmitCopyStep3: // Emit the remaining copy, encoded as 3 bytes. SUBL $1, AX SHLB $2, AX ORB $2, AX MOVB AX, 0(DI) MOVW R11, 1(DI) ADDQ $3, DI inlineEmitCopyEnd: // End inline of the emitCopy call. // ---------------------------------------- // nextEmit = s MOVQ SI, R10 // if s >= sLimit { goto emitRemainder } MOVQ SI, AX SUBQ DX, AX CMPQ AX, R9 JAE emitRemainder // As per the encode_other.go code: // // We could immediately etc. // x := load64(src, s-1) MOVQ -1(SI), R14 // prevHash := hash(uint32(x>>0), shift) MOVL R14, R11 IMULL $0x1e35a7bd, R11 SHRL CX, R11 // table[prevHash] = uint16(s-1) MOVQ SI, AX SUBQ DX, AX SUBQ $1, AX // XXX: MOVW AX, table-32768(SP)(R11*2) // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2) BYTE $0x66 BYTE $0x42 BYTE $0x89 BYTE $0x44 BYTE $0x5c BYTE $0x78 // currHash := hash(uint32(x>>8), shift) SHRQ $8, R14 MOVL R14, R11 IMULL $0x1e35a7bd, R11 SHRL CX, R11 // candidate = int(table[currHash]) // XXX: MOVWQZX table-32768(SP)(R11*2), R15 // XXX: 4e 0f b7 7c 5c 78 movzwq 0x78(%rsp,%r11,2),%r15 BYTE $0x4e BYTE $0x0f BYTE $0xb7 BYTE $0x7c BYTE $0x5c BYTE $0x78 // table[currHash] = uint16(s) ADDQ $1, AX // XXX: MOVW AX, table-32768(SP)(R11*2) // XXX: 66 42 89 44 5c 78 mov %ax,0x78(%rsp,%r11,2) BYTE $0x66 BYTE $0x42 BYTE $0x89 BYTE $0x44 BYTE $0x5c BYTE $0x78 // if uint32(x>>8) == load32(src, candidate) { continue } MOVL (DX)(R15*1), BX CMPL R14, BX JEQ inner1 // nextHash = hash(uint32(x>>16), shift) SHRQ $8, R14 MOVL R14, R11 IMULL $0x1e35a7bd, R11 SHRL CX, R11 // s++ ADDQ $1, SI // break out of the inner1 for loop, i.e. continue the outer loop. JMP outer emitRemainder: // if nextEmit < len(src) { etc } MOVQ src_len+32(FP), AX ADDQ DX, AX CMPQ R10, AX JEQ encodeBlockEnd // d += emitLiteral(dst[d:], src[nextEmit:]) // // Push args. MOVQ DI, 0(SP) MOVQ $0, 8(SP) // Unnecessary, as the callee ignores it, but conservative. MOVQ $0, 16(SP) // Unnecessary, as the callee ignores it, but conservative. MOVQ R10, 24(SP) SUBQ R10, AX MOVQ AX, 32(SP) MOVQ AX, 40(SP) // Unnecessary, as the callee ignores it, but conservative. // Spill local variables (registers) onto the stack; call; unspill. MOVQ DI, 80(SP) CALL ·emitLiteral(SB) MOVQ 80(SP), DI // Finish the "d +=" part of "d += emitLiteral(etc)". ADDQ 48(SP), DI encodeBlockEnd: MOVQ dst_base+0(FP), AX SUBQ AX, DI MOVQ DI, d+48(FP) RET