package toml import ( "bytes" "fmt" "io" "math" "reflect" "sort" "strconv" "strings" "time" ) // Encodes a string to a TOML-compliant multi-line string value // This function is a clone of the existing encodeTomlString function, except that whitespace characters // are preserved. Quotation marks and backslashes are also not escaped. func encodeMultilineTomlString(value string) string { var b bytes.Buffer for _, rr := range value { switch rr { case '\b': b.WriteString(`\b`) case '\t': b.WriteString("\t") case '\n': b.WriteString("\n") case '\f': b.WriteString(`\f`) case '\r': b.WriteString("\r") case '"': b.WriteString(`"`) case '\\': b.WriteString(`\`) default: intRr := uint16(rr) if intRr < 0x001F { b.WriteString(fmt.Sprintf("\\u%0.4X", intRr)) } else { b.WriteRune(rr) } } } return b.String() } // Encodes a string to a TOML-compliant string value func encodeTomlString(value string) string { var b bytes.Buffer for _, rr := range value { switch rr { case '\b': b.WriteString(`\b`) case '\t': b.WriteString(`\t`) case '\n': b.WriteString(`\n`) case '\f': b.WriteString(`\f`) case '\r': b.WriteString(`\r`) case '"': b.WriteString(`\"`) case '\\': b.WriteString(`\\`) default: intRr := uint16(rr) if intRr < 0x001F { b.WriteString(fmt.Sprintf("\\u%0.4X", intRr)) } else { b.WriteRune(rr) } } } return b.String() } func tomlValueStringRepresentation(v interface{}, indent string, arraysOneElementPerLine bool) (string, error) { // this interface check is added to dereference the change made in the writeTo function. // That change was made to allow this function to see formatting options. tv, ok := v.(*tomlValue) if ok { v = tv.value } else { tv = &tomlValue{} } switch value := v.(type) { case uint64: return strconv.FormatUint(value, 10), nil case int64: return strconv.FormatInt(value, 10), nil case float64: // Ensure a round float does contain a decimal point. Otherwise feeding // the output back to the parser would convert to an integer. if math.Trunc(value) == value { return strings.ToLower(strconv.FormatFloat(value, 'f', 1, 32)), nil } return strings.ToLower(strconv.FormatFloat(value, 'f', -1, 32)), nil case string: if tv.multiline { return "\"\"\"\n" + encodeMultilineTomlString(value) + "\"\"\"", nil } return "\"" + encodeTomlString(value) + "\"", nil case []byte: b, _ := v.([]byte) return tomlValueStringRepresentation(string(b), indent, arraysOneElementPerLine) case bool: if value { return "true", nil } return "false", nil case time.Time: return value.Format(time.RFC3339), nil case nil: return "", nil } rv := reflect.ValueOf(v) if rv.Kind() == reflect.Slice { var values []string for i := 0; i < rv.Len(); i++ { item := rv.Index(i).Interface() itemRepr, err := tomlValueStringRepresentation(item, indent, arraysOneElementPerLine) if err != nil { return "", err } values = append(values, itemRepr) } if arraysOneElementPerLine && len(values) > 1 { stringBuffer := bytes.Buffer{} valueIndent := indent + ` ` // TODO: move that to a shared encoder state stringBuffer.WriteString("[\n") for _, value := range values { stringBuffer.WriteString(valueIndent) stringBuffer.WriteString(value) stringBuffer.WriteString(`,`) stringBuffer.WriteString("\n") } stringBuffer.WriteString(indent + "]") return stringBuffer.String(), nil } return "[" + strings.Join(values, ",") + "]", nil } return "", fmt.Errorf("unsupported value type %T: %v", v, v) } func (t *Tree) writeTo(w io.Writer, indent, keyspace string, bytesCount int64, arraysOneElementPerLine bool) (int64, error) { simpleValuesKeys := make([]string, 0) complexValuesKeys := make([]string, 0) for k := range t.values { v := t.values[k] switch v.(type) { case *Tree, []*Tree: complexValuesKeys = append(complexValuesKeys, k) default: simpleValuesKeys = append(simpleValuesKeys, k) } } sort.Strings(simpleValuesKeys) sort.Strings(complexValuesKeys) for _, k := range simpleValuesKeys { v, ok := t.values[k].(*tomlValue) if !ok { return bytesCount, fmt.Errorf("invalid value type at %s: %T", k, t.values[k]) } repr, err := tomlValueStringRepresentation(v, indent, arraysOneElementPerLine) if err != nil { return bytesCount, err } if v.comment != "" { comment := strings.Replace(v.comment, "\n", "\n"+indent+"#", -1) start := "# " if strings.HasPrefix(comment, "#") { start = "" } writtenBytesCountComment, errc := writeStrings(w, "\n", indent, start, comment, "\n") bytesCount += int64(writtenBytesCountComment) if errc != nil { return bytesCount, errc } } var commented string if v.commented { commented = "# " } writtenBytesCount, err := writeStrings(w, indent, commented, k, " = ", repr, "\n") bytesCount += int64(writtenBytesCount) if err != nil { return bytesCount, err } } for _, k := range complexValuesKeys { v := t.values[k] combinedKey := k if keyspace != "" { combinedKey = keyspace + "." + combinedKey } var commented string if t.commented { commented = "# " } switch node := v.(type) { // node has to be of those two types given how keys are sorted above case *Tree: tv, ok := t.values[k].(*Tree) if !ok { return bytesCount, fmt.Errorf("invalid value type at %s: %T", k, t.values[k]) } if tv.comment != "" { comment := strings.Replace(tv.comment, "\n", "\n"+indent+"#", -1) start := "# " if strings.HasPrefix(comment, "#") { start = "" } writtenBytesCountComment, errc := writeStrings(w, "\n", indent, start, comment) bytesCount += int64(writtenBytesCountComment) if errc != nil { return bytesCount, errc } } writtenBytesCount, err := writeStrings(w, "\n", indent, commented, "[", combinedKey, "]\n") bytesCount += int64(writtenBytesCount) if err != nil { return bytesCount, err } bytesCount, err = node.writeTo(w, indent+" ", combinedKey, bytesCount, arraysOneElementPerLine) if err != nil { return bytesCount, err } case []*Tree: for _, subTree := range node { writtenBytesCount, err := writeStrings(w, "\n", indent, commented, "[[", combinedKey, "]]\n") bytesCount += int64(writtenBytesCount) if err != nil { return bytesCount, err } bytesCount, err = subTree.writeTo(w, indent+" ", combinedKey, bytesCount, arraysOneElementPerLine) if err != nil { return bytesCount, err } } } } return bytesCount, nil } func writeStrings(w io.Writer, s ...string) (int, error) { var n int for i := range s { b, err := io.WriteString(w, s[i]) n += b if err != nil { return n, err } } return n, nil } // WriteTo encode the Tree as Toml and writes it to the writer w. // Returns the number of bytes written in case of success, or an error if anything happened. func (t *Tree) WriteTo(w io.Writer) (int64, error) { return t.writeTo(w, "", "", 0, false) } // ToTomlString generates a human-readable representation of the current tree. // Output spans multiple lines, and is suitable for ingest by a TOML parser. // If the conversion cannot be performed, ToString returns a non-nil error. func (t *Tree) ToTomlString() (string, error) { var buf bytes.Buffer _, err := t.WriteTo(&buf) if err != nil { return "", err } return buf.String(), nil } // String generates a human-readable representation of the current tree. // Alias of ToString. Present to implement the fmt.Stringer interface. func (t *Tree) String() string { result, _ := t.ToTomlString() return result } // ToMap recursively generates a representation of the tree using Go built-in structures. // The following types are used: // // * bool // * float64 // * int64 // * string // * uint64 // * time.Time // * map[string]interface{} (where interface{} is any of this list) // * []interface{} (where interface{} is any of this list) func (t *Tree) ToMap() map[string]interface{} { result := map[string]interface{}{} for k, v := range t.values { switch node := v.(type) { case []*Tree: var array []interface{} for _, item := range node { array = append(array, item.ToMap()) } result[k] = array case *Tree: result[k] = node.ToMap() case *tomlValue: result[k] = node.value } } return result }