// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build amd64,!gccgo,!appengine package curve25519 // These functions are implemented in the .s files. The names of the functions // in the rest of the file are also taken from the SUPERCOP sources to help // people following along. //go:noescape func cswap(inout *[5]uint64, v uint64) //go:noescape func ladderstep(inout *[5][5]uint64) //go:noescape func freeze(inout *[5]uint64) //go:noescape func mul(dest, a, b *[5]uint64) //go:noescape func square(out, in *[5]uint64) // mladder uses a Montgomery ladder to calculate (xr/zr) *= s. func mladder(xr, zr *[5]uint64, s *[32]byte) { var work [5][5]uint64 work[0] = *xr setint(&work[1], 1) setint(&work[2], 0) work[3] = *xr setint(&work[4], 1) j := uint(6) var prevbit byte for i := 31; i >= 0; i-- { for j < 8 { bit := ((*s)[i] >> j) & 1 swap := bit ^ prevbit prevbit = bit cswap(&work[1], uint64(swap)) ladderstep(&work) j-- } j = 7 } *xr = work[1] *zr = work[2] } func scalarMult(out, in, base *[32]byte) { var e [32]byte copy(e[:], (*in)[:]) e[0] &= 248 e[31] &= 127 e[31] |= 64 var t, z [5]uint64 unpack(&t, base) mladder(&t, &z, &e) invert(&z, &z) mul(&t, &t, &z) pack(out, &t) } func setint(r *[5]uint64, v uint64) { r[0] = v r[1] = 0 r[2] = 0 r[3] = 0 r[4] = 0 } // unpack sets r = x where r consists of 5, 51-bit limbs in little-endian // order. func unpack(r *[5]uint64, x *[32]byte) { r[0] = uint64(x[0]) | uint64(x[1])<<8 | uint64(x[2])<<16 | uint64(x[3])<<24 | uint64(x[4])<<32 | uint64(x[5])<<40 | uint64(x[6]&7)<<48 r[1] = uint64(x[6])>>3 | uint64(x[7])<<5 | uint64(x[8])<<13 | uint64(x[9])<<21 | uint64(x[10])<<29 | uint64(x[11])<<37 | uint64(x[12]&63)<<45 r[2] = uint64(x[12])>>6 | uint64(x[13])<<2 | uint64(x[14])<<10 | uint64(x[15])<<18 | uint64(x[16])<<26 | uint64(x[17])<<34 | uint64(x[18])<<42 | uint64(x[19]&1)<<50 r[3] = uint64(x[19])>>1 | uint64(x[20])<<7 | uint64(x[21])<<15 | uint64(x[22])<<23 | uint64(x[23])<<31 | uint64(x[24])<<39 | uint64(x[25]&15)<<47 r[4] = uint64(x[25])>>4 | uint64(x[26])<<4 | uint64(x[27])<<12 | uint64(x[28])<<20 | uint64(x[29])<<28 | uint64(x[30])<<36 | uint64(x[31]&127)<<44 } // pack sets out = x where out is the usual, little-endian form of the 5, // 51-bit limbs in x. func pack(out *[32]byte, x *[5]uint64) { t := *x freeze(&t) out[0] = byte(t[0]) out[1] = byte(t[0] >> 8) out[2] = byte(t[0] >> 16) out[3] = byte(t[0] >> 24) out[4] = byte(t[0] >> 32) out[5] = byte(t[0] >> 40) out[6] = byte(t[0] >> 48) out[6] ^= byte(t[1]<<3) & 0xf8 out[7] = byte(t[1] >> 5) out[8] = byte(t[1] >> 13) out[9] = byte(t[1] >> 21) out[10] = byte(t[1] >> 29) out[11] = byte(t[1] >> 37) out[12] = byte(t[1] >> 45) out[12] ^= byte(t[2]<<6) & 0xc0 out[13] = byte(t[2] >> 2) out[14] = byte(t[2] >> 10) out[15] = byte(t[2] >> 18) out[16] = byte(t[2] >> 26) out[17] = byte(t[2] >> 34) out[18] = byte(t[2] >> 42) out[19] = byte(t[2] >> 50) out[19] ^= byte(t[3]<<1) & 0xfe out[20] = byte(t[3] >> 7) out[21] = byte(t[3] >> 15) out[22] = byte(t[3] >> 23) out[23] = byte(t[3] >> 31) out[24] = byte(t[3] >> 39) out[25] = byte(t[3] >> 47) out[25] ^= byte(t[4]<<4) & 0xf0 out[26] = byte(t[4] >> 4) out[27] = byte(t[4] >> 12) out[28] = byte(t[4] >> 20) out[29] = byte(t[4] >> 28) out[30] = byte(t[4] >> 36) out[31] = byte(t[4] >> 44) } // invert calculates r = x^-1 mod p using Fermat's little theorem. func invert(r *[5]uint64, x *[5]uint64) { var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64 square(&z2, x) /* 2 */ square(&t, &z2) /* 4 */ square(&t, &t) /* 8 */ mul(&z9, &t, x) /* 9 */ mul(&z11, &z9, &z2) /* 11 */ square(&t, &z11) /* 22 */ mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */ square(&t, &z2_5_0) /* 2^6 - 2^1 */ for i := 1; i < 5; i++ { /* 2^20 - 2^10 */ square(&t, &t) } mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */ square(&t, &z2_10_0) /* 2^11 - 2^1 */ for i := 1; i < 10; i++ { /* 2^20 - 2^10 */ square(&t, &t) } mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */ square(&t, &z2_20_0) /* 2^21 - 2^1 */ for i := 1; i < 20; i++ { /* 2^40 - 2^20 */ square(&t, &t) } mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */ square(&t, &t) /* 2^41 - 2^1 */ for i := 1; i < 10; i++ { /* 2^50 - 2^10 */ square(&t, &t) } mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */ square(&t, &z2_50_0) /* 2^51 - 2^1 */ for i := 1; i < 50; i++ { /* 2^100 - 2^50 */ square(&t, &t) } mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */ square(&t, &z2_100_0) /* 2^101 - 2^1 */ for i := 1; i < 100; i++ { /* 2^200 - 2^100 */ square(&t, &t) } mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */ square(&t, &t) /* 2^201 - 2^1 */ for i := 1; i < 50; i++ { /* 2^250 - 2^50 */ square(&t, &t) } mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */ square(&t, &t) /* 2^251 - 2^1 */ square(&t, &t) /* 2^252 - 2^2 */ square(&t, &t) /* 2^253 - 2^3 */ square(&t, &t) /* 2^254 - 2^4 */ square(&t, &t) /* 2^255 - 2^5 */ mul(r, &t, &z11) /* 2^255 - 21 */ }