/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ // Package credentials implements various credentials supported by gRPC library, // which encapsulate all the state needed by a client to authenticate with a // server and make various assertions, e.g., about the client's identity, role, // or whether it is authorized to make a particular call. package credentials // import "google.golang.org/grpc/credentials" import ( "crypto/tls" "crypto/x509" "errors" "fmt" "io/ioutil" "net" "strings" "github.com/golang/protobuf/proto" "golang.org/x/net/context" ) // alpnProtoStr are the specified application level protocols for gRPC. var alpnProtoStr = []string{"h2"} // PerRPCCredentials defines the common interface for the credentials which need to // attach security information to every RPC (e.g., oauth2). type PerRPCCredentials interface { // GetRequestMetadata gets the current request metadata, refreshing // tokens if required. This should be called by the transport layer on // each request, and the data should be populated in headers or other // context. If a status code is returned, it will be used as the status // for the RPC. uri is the URI of the entry point for the request. // When supported by the underlying implementation, ctx can be used for // timeout and cancellation. // TODO(zhaoq): Define the set of the qualified keys instead of leaving // it as an arbitrary string. GetRequestMetadata(ctx context.Context, uri ...string) (map[string]string, error) // RequireTransportSecurity indicates whether the credentials requires // transport security. RequireTransportSecurity() bool } // ProtocolInfo provides information regarding the gRPC wire protocol version, // security protocol, security protocol version in use, server name, etc. type ProtocolInfo struct { // ProtocolVersion is the gRPC wire protocol version. ProtocolVersion string // SecurityProtocol is the security protocol in use. SecurityProtocol string // SecurityVersion is the security protocol version. SecurityVersion string // ServerName is the user-configured server name. ServerName string } // AuthInfo defines the common interface for the auth information the users are interested in. type AuthInfo interface { AuthType() string } // ErrConnDispatched indicates that rawConn has been dispatched out of gRPC // and the caller should not close rawConn. var ErrConnDispatched = errors.New("credentials: rawConn is dispatched out of gRPC") // TransportCredentials defines the common interface for all the live gRPC wire // protocols and supported transport security protocols (e.g., TLS, SSL). type TransportCredentials interface { // ClientHandshake does the authentication handshake specified by the corresponding // authentication protocol on rawConn for clients. It returns the authenticated // connection and the corresponding auth information about the connection. // Implementations must use the provided context to implement timely cancellation. // gRPC will try to reconnect if the error returned is a temporary error // (io.EOF, context.DeadlineExceeded or err.Temporary() == true). // If the returned error is a wrapper error, implementations should make sure that // the error implements Temporary() to have the correct retry behaviors. // // If the returned net.Conn is closed, it MUST close the net.Conn provided. ClientHandshake(context.Context, string, net.Conn) (net.Conn, AuthInfo, error) // ServerHandshake does the authentication handshake for servers. It returns // the authenticated connection and the corresponding auth information about // the connection. // // If the returned net.Conn is closed, it MUST close the net.Conn provided. ServerHandshake(net.Conn) (net.Conn, AuthInfo, error) // Info provides the ProtocolInfo of this TransportCredentials. Info() ProtocolInfo // Clone makes a copy of this TransportCredentials. Clone() TransportCredentials // OverrideServerName overrides the server name used to verify the hostname on the returned certificates from the server. // gRPC internals also use it to override the virtual hosting name if it is set. // It must be called before dialing. Currently, this is only used by grpclb. OverrideServerName(string) error } // TLSInfo contains the auth information for a TLS authenticated connection. // It implements the AuthInfo interface. type TLSInfo struct { State tls.ConnectionState } // AuthType returns the type of TLSInfo as a string. func (t TLSInfo) AuthType() string { return "tls" } // GetChannelzSecurityValue returns security info requested by channelz. func (t TLSInfo) GetChannelzSecurityValue() ChannelzSecurityValue { v := &TLSChannelzSecurityValue{ StandardName: cipherSuiteLookup[t.State.CipherSuite], } // Currently there's no way to get LocalCertificate info from tls package. if len(t.State.PeerCertificates) > 0 { v.RemoteCertificate = t.State.PeerCertificates[0].Raw } return v } // tlsCreds is the credentials required for authenticating a connection using TLS. type tlsCreds struct { // TLS configuration config *tls.Config } func (c tlsCreds) Info() ProtocolInfo { return ProtocolInfo{ SecurityProtocol: "tls", SecurityVersion: "1.2", ServerName: c.config.ServerName, } } func (c *tlsCreds) ClientHandshake(ctx context.Context, authority string, rawConn net.Conn) (_ net.Conn, _ AuthInfo, err error) { // use local cfg to avoid clobbering ServerName if using multiple endpoints cfg := cloneTLSConfig(c.config) if cfg.ServerName == "" { colonPos := strings.LastIndex(authority, ":") if colonPos == -1 { colonPos = len(authority) } cfg.ServerName = authority[:colonPos] } conn := tls.Client(rawConn, cfg) errChannel := make(chan error, 1) go func() { errChannel <- conn.Handshake() }() select { case err := <-errChannel: if err != nil { return nil, nil, err } case <-ctx.Done(): return nil, nil, ctx.Err() } return tlsConn{Conn: conn, rawConn: rawConn}, TLSInfo{conn.ConnectionState()}, nil } func (c *tlsCreds) ServerHandshake(rawConn net.Conn) (net.Conn, AuthInfo, error) { conn := tls.Server(rawConn, c.config) if err := conn.Handshake(); err != nil { return nil, nil, err } return tlsConn{Conn: conn, rawConn: rawConn}, TLSInfo{conn.ConnectionState()}, nil } func (c *tlsCreds) Clone() TransportCredentials { return NewTLS(c.config) } func (c *tlsCreds) OverrideServerName(serverNameOverride string) error { c.config.ServerName = serverNameOverride return nil } // NewTLS uses c to construct a TransportCredentials based on TLS. func NewTLS(c *tls.Config) TransportCredentials { tc := &tlsCreds{cloneTLSConfig(c)} tc.config.NextProtos = alpnProtoStr return tc } // NewClientTLSFromCert constructs TLS credentials from the input certificate for client. // serverNameOverride is for testing only. If set to a non empty string, // it will override the virtual host name of authority (e.g. :authority header field) in requests. func NewClientTLSFromCert(cp *x509.CertPool, serverNameOverride string) TransportCredentials { return NewTLS(&tls.Config{ServerName: serverNameOverride, RootCAs: cp}) } // NewClientTLSFromFile constructs TLS credentials from the input certificate file for client. // serverNameOverride is for testing only. If set to a non empty string, // it will override the virtual host name of authority (e.g. :authority header field) in requests. func NewClientTLSFromFile(certFile, serverNameOverride string) (TransportCredentials, error) { b, err := ioutil.ReadFile(certFile) if err != nil { return nil, err } cp := x509.NewCertPool() if !cp.AppendCertsFromPEM(b) { return nil, fmt.Errorf("credentials: failed to append certificates") } return NewTLS(&tls.Config{ServerName: serverNameOverride, RootCAs: cp}), nil } // NewServerTLSFromCert constructs TLS credentials from the input certificate for server. func NewServerTLSFromCert(cert *tls.Certificate) TransportCredentials { return NewTLS(&tls.Config{Certificates: []tls.Certificate{*cert}}) } // NewServerTLSFromFile constructs TLS credentials from the input certificate file and key // file for server. func NewServerTLSFromFile(certFile, keyFile string) (TransportCredentials, error) { cert, err := tls.LoadX509KeyPair(certFile, keyFile) if err != nil { return nil, err } return NewTLS(&tls.Config{Certificates: []tls.Certificate{cert}}), nil } // ChannelzSecurityInfo defines the interface that security protocols should implement // in order to provide security info to channelz. type ChannelzSecurityInfo interface { GetSecurityValue() ChannelzSecurityValue } // ChannelzSecurityValue defines the interface that GetSecurityValue() return value // should satisfy. This interface should only be satisfied by *TLSChannelzSecurityValue // and *OtherChannelzSecurityValue. type ChannelzSecurityValue interface { isChannelzSecurityValue() } // TLSChannelzSecurityValue defines the struct that TLS protocol should return // from GetSecurityValue(), containing security info like cipher and certificate used. type TLSChannelzSecurityValue struct { StandardName string LocalCertificate []byte RemoteCertificate []byte } func (*TLSChannelzSecurityValue) isChannelzSecurityValue() {} // OtherChannelzSecurityValue defines the struct that non-TLS protocol should return // from GetSecurityValue(), which contains protocol specific security info. Note // the Value field will be sent to users of channelz requesting channel info, and // thus sensitive info should better be avoided. type OtherChannelzSecurityValue struct { Name string Value proto.Message } func (*OtherChannelzSecurityValue) isChannelzSecurityValue() {} type tlsConn struct { *tls.Conn rawConn net.Conn } var cipherSuiteLookup = map[uint16]string{ tls.TLS_RSA_WITH_RC4_128_SHA: "TLS_RSA_WITH_RC4_128_SHA", tls.TLS_RSA_WITH_3DES_EDE_CBC_SHA: "TLS_RSA_WITH_3DES_EDE_CBC_SHA", tls.TLS_RSA_WITH_AES_128_CBC_SHA: "TLS_RSA_WITH_AES_128_CBC_SHA", tls.TLS_RSA_WITH_AES_256_CBC_SHA: "TLS_RSA_WITH_AES_256_CBC_SHA", tls.TLS_RSA_WITH_AES_128_GCM_SHA256: "TLS_RSA_WITH_AES_128_GCM_SHA256", tls.TLS_RSA_WITH_AES_256_GCM_SHA384: "TLS_RSA_WITH_AES_256_GCM_SHA384", tls.TLS_ECDHE_ECDSA_WITH_RC4_128_SHA: "TLS_ECDHE_ECDSA_WITH_RC4_128_SHA", tls.TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA", tls.TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_RC4_128_SHA: "TLS_ECDHE_RSA_WITH_RC4_128_SHA", tls.TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA: "TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA: "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA", tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256", tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256", tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384", tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384", tls.TLS_FALLBACK_SCSV: "TLS_FALLBACK_SCSV", }