/* * * Copyright 2014 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ package transport import ( "fmt" "math" "sync" "sync/atomic" ) // writeQuota is a soft limit on the amount of data a stream can // schedule before some of it is written out. type writeQuota struct { quota int32 // get waits on read from when quota goes less than or equal to zero. // replenish writes on it when quota goes positive again. ch chan struct{} // done is triggered in error case. done <-chan struct{} // replenish is called by loopyWriter to give quota back to. // It is implemented as a field so that it can be updated // by tests. replenish func(n int) } func newWriteQuota(sz int32, done <-chan struct{}) *writeQuota { w := &writeQuota{ quota: sz, ch: make(chan struct{}, 1), done: done, } w.replenish = w.realReplenish return w } func (w *writeQuota) get(sz int32) error { for { if atomic.LoadInt32(&w.quota) > 0 { atomic.AddInt32(&w.quota, -sz) return nil } select { case <-w.ch: continue case <-w.done: return errStreamDone } } } func (w *writeQuota) realReplenish(n int) { sz := int32(n) a := atomic.AddInt32(&w.quota, sz) b := a - sz if b <= 0 && a > 0 { select { case w.ch <- struct{}{}: default: } } } type trInFlow struct { limit uint32 unacked uint32 effectiveWindowSize uint32 } func (f *trInFlow) newLimit(n uint32) uint32 { d := n - f.limit f.limit = n f.updateEffectiveWindowSize() return d } func (f *trInFlow) onData(n uint32) uint32 { f.unacked += n if f.unacked >= f.limit/4 { w := f.unacked f.unacked = 0 f.updateEffectiveWindowSize() return w } f.updateEffectiveWindowSize() return 0 } func (f *trInFlow) reset() uint32 { w := f.unacked f.unacked = 0 f.updateEffectiveWindowSize() return w } func (f *trInFlow) updateEffectiveWindowSize() { atomic.StoreUint32(&f.effectiveWindowSize, f.limit-f.unacked) } func (f *trInFlow) getSize() uint32 { return atomic.LoadUint32(&f.effectiveWindowSize) } // TODO(mmukhi): Simplify this code. // inFlow deals with inbound flow control type inFlow struct { mu sync.Mutex // The inbound flow control limit for pending data. limit uint32 // pendingData is the overall data which have been received but not been // consumed by applications. pendingData uint32 // The amount of data the application has consumed but grpc has not sent // window update for them. Used to reduce window update frequency. pendingUpdate uint32 // delta is the extra window update given by receiver when an application // is reading data bigger in size than the inFlow limit. delta uint32 } // newLimit updates the inflow window to a new value n. // It assumes that n is always greater than the old limit. func (f *inFlow) newLimit(n uint32) uint32 { f.mu.Lock() d := n - f.limit f.limit = n f.mu.Unlock() return d } func (f *inFlow) maybeAdjust(n uint32) uint32 { if n > uint32(math.MaxInt32) { n = uint32(math.MaxInt32) } f.mu.Lock() // estSenderQuota is the receiver's view of the maximum number of bytes the sender // can send without a window update. estSenderQuota := int32(f.limit - (f.pendingData + f.pendingUpdate)) // estUntransmittedData is the maximum number of bytes the sends might not have put // on the wire yet. A value of 0 or less means that we have already received all or // more bytes than the application is requesting to read. estUntransmittedData := int32(n - f.pendingData) // Casting into int32 since it could be negative. // This implies that unless we send a window update, the sender won't be able to send all the bytes // for this message. Therefore we must send an update over the limit since there's an active read // request from the application. if estUntransmittedData > estSenderQuota { // Sender's window shouldn't go more than 2^31 - 1 as specified in the HTTP spec. if f.limit+n > maxWindowSize { f.delta = maxWindowSize - f.limit } else { // Send a window update for the whole message and not just the difference between // estUntransmittedData and estSenderQuota. This will be helpful in case the message // is padded; We will fallback on the current available window(at least a 1/4th of the limit). f.delta = n } f.mu.Unlock() return f.delta } f.mu.Unlock() return 0 } // onData is invoked when some data frame is received. It updates pendingData. func (f *inFlow) onData(n uint32) error { f.mu.Lock() f.pendingData += n if f.pendingData+f.pendingUpdate > f.limit+f.delta { limit := f.limit rcvd := f.pendingData + f.pendingUpdate f.mu.Unlock() return fmt.Errorf("received %d-bytes data exceeding the limit %d bytes", rcvd, limit) } f.mu.Unlock() return nil } // onRead is invoked when the application reads the data. It returns the window size // to be sent to the peer. func (f *inFlow) onRead(n uint32) uint32 { f.mu.Lock() if f.pendingData == 0 { f.mu.Unlock() return 0 } f.pendingData -= n if n > f.delta { n -= f.delta f.delta = 0 } else { f.delta -= n n = 0 } f.pendingUpdate += n if f.pendingUpdate >= f.limit/4 { wu := f.pendingUpdate f.pendingUpdate = 0 f.mu.Unlock() return wu } f.mu.Unlock() return 0 }