aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/hashicorp/hcl/decoder.go
blob: c8a077d47f4237964945caf7b30ecfd7aca662e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
package hcl

import (
	"errors"
	"fmt"
	"reflect"
	"sort"
	"strconv"
	"strings"

	"github.com/hashicorp/hcl/hcl/ast"
	"github.com/hashicorp/hcl/hcl/parser"
	"github.com/hashicorp/hcl/hcl/token"
)

// This is the tag to use with structures to have settings for HCL
const tagName = "hcl"

var (
	// nodeType holds a reference to the type of ast.Node
	nodeType reflect.Type = findNodeType()
)

// Unmarshal accepts a byte slice as input and writes the
// data to the value pointed to by v.
func Unmarshal(bs []byte, v interface{}) error {
	root, err := parse(bs)
	if err != nil {
		return err
	}

	return DecodeObject(v, root)
}

// Decode reads the given input and decodes it into the structure
// given by `out`.
func Decode(out interface{}, in string) error {
	obj, err := Parse(in)
	if err != nil {
		return err
	}

	return DecodeObject(out, obj)
}

// DecodeObject is a lower-level version of Decode. It decodes a
// raw Object into the given output.
func DecodeObject(out interface{}, n ast.Node) error {
	val := reflect.ValueOf(out)
	if val.Kind() != reflect.Ptr {
		return errors.New("result must be a pointer")
	}

	// If we have the file, we really decode the root node
	if f, ok := n.(*ast.File); ok {
		n = f.Node
	}

	var d decoder
	return d.decode("root", n, val.Elem())
}

type decoder struct {
	stack []reflect.Kind
}

func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error {
	k := result

	// If we have an interface with a valid value, we use that
	// for the check.
	if result.Kind() == reflect.Interface {
		elem := result.Elem()
		if elem.IsValid() {
			k = elem
		}
	}

	// Push current onto stack unless it is an interface.
	if k.Kind() != reflect.Interface {
		d.stack = append(d.stack, k.Kind())

		// Schedule a pop
		defer func() {
			d.stack = d.stack[:len(d.stack)-1]
		}()
	}

	switch k.Kind() {
	case reflect.Bool:
		return d.decodeBool(name, node, result)
	case reflect.Float64:
		return d.decodeFloat(name, node, result)
	case reflect.Int:
		return d.decodeInt(name, node, result)
	case reflect.Interface:
		// When we see an interface, we make our own thing
		return d.decodeInterface(name, node, result)
	case reflect.Map:
		return d.decodeMap(name, node, result)
	case reflect.Ptr:
		return d.decodePtr(name, node, result)
	case reflect.Slice:
		return d.decodeSlice(name, node, result)
	case reflect.String:
		return d.decodeString(name, node, result)
	case reflect.Struct:
		return d.decodeStruct(name, node, result)
	default:
		return &parser.PosError{
			Pos: node.Pos(),
			Err: fmt.Errorf("%s: unknown kind to decode into: %s", name, k.Kind()),
		}
	}
}

func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error {
	switch n := node.(type) {
	case *ast.LiteralType:
		if n.Token.Type == token.BOOL {
			v, err := strconv.ParseBool(n.Token.Text)
			if err != nil {
				return err
			}

			result.Set(reflect.ValueOf(v))
			return nil
		}
	}

	return &parser.PosError{
		Pos: node.Pos(),
		Err: fmt.Errorf("%s: unknown type %T", name, node),
	}
}

func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error {
	switch n := node.(type) {
	case *ast.LiteralType:
		if n.Token.Type == token.FLOAT {
			v, err := strconv.ParseFloat(n.Token.Text, 64)
			if err != nil {
				return err
			}

			result.Set(reflect.ValueOf(v))
			return nil
		}
	}

	return &parser.PosError{
		Pos: node.Pos(),
		Err: fmt.Errorf("%s: unknown type %T", name, node),
	}
}

func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error {
	switch n := node.(type) {
	case *ast.LiteralType:
		switch n.Token.Type {
		case token.NUMBER:
			v, err := strconv.ParseInt(n.Token.Text, 0, 0)
			if err != nil {
				return err
			}

			result.Set(reflect.ValueOf(int(v)))
			return nil
		case token.STRING:
			v, err := strconv.ParseInt(n.Token.Value().(string), 0, 0)
			if err != nil {
				return err
			}

			result.Set(reflect.ValueOf(int(v)))
			return nil
		}
	}

	return &parser.PosError{
		Pos: node.Pos(),
		Err: fmt.Errorf("%s: unknown type %T", name, node),
	}
}

func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error {
	// When we see an ast.Node, we retain the value to enable deferred decoding.
	// Very useful in situations where we want to preserve ast.Node information
	// like Pos
	if result.Type() == nodeType && result.CanSet() {
		result.Set(reflect.ValueOf(node))
		return nil
	}

	var set reflect.Value
	redecode := true

	// For testing types, ObjectType should just be treated as a list. We
	// set this to a temporary var because we want to pass in the real node.
	testNode := node
	if ot, ok := node.(*ast.ObjectType); ok {
		testNode = ot.List
	}

	switch n := testNode.(type) {
	case *ast.ObjectList:
		// If we're at the root or we're directly within a slice, then we
		// decode objects into map[string]interface{}, otherwise we decode
		// them into lists.
		if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
			var temp map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeMap(
				reflect.MapOf(
					reflect.TypeOf(""),
					tempVal.Type().Elem()))

			set = result
		} else {
			var temp []map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeSlice(
				reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items))
			set = result
		}
	case *ast.ObjectType:
		// If we're at the root or we're directly within a slice, then we
		// decode objects into map[string]interface{}, otherwise we decode
		// them into lists.
		if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
			var temp map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeMap(
				reflect.MapOf(
					reflect.TypeOf(""),
					tempVal.Type().Elem()))

			set = result
		} else {
			var temp []map[string]interface{}
			tempVal := reflect.ValueOf(temp)
			result := reflect.MakeSlice(
				reflect.SliceOf(tempVal.Type().Elem()), 0, 1)
			set = result
		}
	case *ast.ListType:
		var temp []interface{}
		tempVal := reflect.ValueOf(temp)
		result := reflect.MakeSlice(
			reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
		set = result
	case *ast.LiteralType:
		switch n.Token.Type {
		case token.BOOL:
			var result bool
			set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
		case token.FLOAT:
			var result float64
			set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
		case token.NUMBER:
			var result int
			set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
		case token.STRING, token.HEREDOC:
			set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
		default:
			return &parser.PosError{
				Pos: node.Pos(),
				Err: fmt.Errorf("%s: cannot decode into interface: %T", name, node),
			}
		}
	default:
		return fmt.Errorf(
			"%s: cannot decode into interface: %T",
			name, node)
	}

	// Set the result to what its supposed to be, then reset
	// result so we don't reflect into this method anymore.
	result.Set(set)

	if redecode {
		// Revisit the node so that we can use the newly instantiated
		// thing and populate it.
		if err := d.decode(name, node, result); err != nil {
			return err
		}
	}

	return nil
}

func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error {
	if item, ok := node.(*ast.ObjectItem); ok {
		node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
	}

	if ot, ok := node.(*ast.ObjectType); ok {
		node = ot.List
	}

	n, ok := node.(*ast.ObjectList)
	if !ok {
		return &parser.PosError{
			Pos: node.Pos(),
			Err: fmt.Errorf("%s: not an object type for map (%T)", name, node),
		}
	}

	// If we have an interface, then we can address the interface,
	// but not the slice itself, so get the element but set the interface
	set := result
	if result.Kind() == reflect.Interface {
		result = result.Elem()
	}

	resultType := result.Type()
	resultElemType := resultType.Elem()
	resultKeyType := resultType.Key()
	if resultKeyType.Kind() != reflect.String {
		return &parser.PosError{
			Pos: node.Pos(),
			Err: fmt.Errorf("%s: map must have string keys", name),
		}
	}

	// Make a map if it is nil
	resultMap := result
	if result.IsNil() {
		resultMap = reflect.MakeMap(
			reflect.MapOf(resultKeyType, resultElemType))
	}

	// Go through each element and decode it.
	done := make(map[string]struct{})
	for _, item := range n.Items {
		if item.Val == nil {
			continue
		}

		// github.com/hashicorp/terraform/issue/5740
		if len(item.Keys) == 0 {
			return &parser.PosError{
				Pos: node.Pos(),
				Err: fmt.Errorf("%s: map must have string keys", name),
			}
		}

		// Get the key we're dealing with, which is the first item
		keyStr := item.Keys[0].Token.Value().(string)

		// If we've already processed this key, then ignore it
		if _, ok := done[keyStr]; ok {
			continue
		}

		// Determine the value. If we have more than one key, then we
		// get the objectlist of only these keys.
		itemVal := item.Val
		if len(item.Keys) > 1 {
			itemVal = n.Filter(keyStr)
			done[keyStr] = struct{}{}
		}

		// Make the field name
		fieldName := fmt.Sprintf("%s.%s", name, keyStr)

		// Get the key/value as reflection values
		key := reflect.ValueOf(keyStr)
		val := reflect.Indirect(reflect.New(resultElemType))

		// If we have a pre-existing value in the map, use that
		oldVal := resultMap.MapIndex(key)
		if oldVal.IsValid() {
			val.Set(oldVal)
		}

		// Decode!
		if err := d.decode(fieldName, itemVal, val); err != nil {
			return err
		}

		// Set the value on the map
		resultMap.SetMapIndex(key, val)
	}

	// Set the final map if we can
	set.Set(resultMap)
	return nil
}

func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error {
	// Create an element of the concrete (non pointer) type and decode
	// into that. Then set the value of the pointer to this type.
	resultType := result.Type()
	resultElemType := resultType.Elem()
	val := reflect.New(resultElemType)
	if err := d.decode(name, node, reflect.Indirect(val)); err != nil {
		return err
	}

	result.Set(val)
	return nil
}

func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error {
	// If we have an interface, then we can address the interface,
	// but not the slice itself, so get the element but set the interface
	set := result
	if result.Kind() == reflect.Interface {
		result = result.Elem()
	}
	// Create the slice if it isn't nil
	resultType := result.Type()
	resultElemType := resultType.Elem()
	if result.IsNil() {
		resultSliceType := reflect.SliceOf(resultElemType)
		result = reflect.MakeSlice(
			resultSliceType, 0, 0)
	}

	// Figure out the items we'll be copying into the slice
	var items []ast.Node
	switch n := node.(type) {
	case *ast.ObjectList:
		items = make([]ast.Node, len(n.Items))
		for i, item := range n.Items {
			items[i] = item
		}
	case *ast.ObjectType:
		items = []ast.Node{n}
	case *ast.ListType:
		items = n.List
	default:
		return &parser.PosError{
			Pos: node.Pos(),
			Err: fmt.Errorf("unknown slice type: %T", node),
		}
	}

	for i, item := range items {
		fieldName := fmt.Sprintf("%s[%d]", name, i)

		// Decode
		val := reflect.Indirect(reflect.New(resultElemType))

		// if item is an object that was decoded from ambiguous JSON and
		// flattened, make sure it's expanded if it needs to decode into a
		// defined structure.
		item := expandObject(item, val)

		if err := d.decode(fieldName, item, val); err != nil {
			return err
		}

		// Append it onto the slice
		result = reflect.Append(result, val)
	}

	set.Set(result)
	return nil
}

// expandObject detects if an ambiguous JSON object was flattened to a List which
// should be decoded into a struct, and expands the ast to properly deocode.
func expandObject(node ast.Node, result reflect.Value) ast.Node {
	item, ok := node.(*ast.ObjectItem)
	if !ok {
		return node
	}

	elemType := result.Type()

	// our target type must be a struct
	switch elemType.Kind() {
	case reflect.Ptr:
		switch elemType.Elem().Kind() {
		case reflect.Struct:
			//OK
		default:
			return node
		}
	case reflect.Struct:
		//OK
	default:
		return node
	}

	// A list value will have a key and field name. If it had more fields,
	// it wouldn't have been flattened.
	if len(item.Keys) != 2 {
		return node
	}

	keyToken := item.Keys[0].Token
	item.Keys = item.Keys[1:]

	// we need to un-flatten the ast enough to decode
	newNode := &ast.ObjectItem{
		Keys: []*ast.ObjectKey{
			&ast.ObjectKey{
				Token: keyToken,
			},
		},
		Val: &ast.ObjectType{
			List: &ast.ObjectList{
				Items: []*ast.ObjectItem{item},
			},
		},
	}

	return newNode
}

func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error {
	switch n := node.(type) {
	case *ast.LiteralType:
		switch n.Token.Type {
		case token.NUMBER:
			result.Set(reflect.ValueOf(n.Token.Text).Convert(result.Type()))
			return nil
		case token.STRING, token.HEREDOC:
			result.Set(reflect.ValueOf(n.Token.Value()).Convert(result.Type()))
			return nil
		}
	}

	return &parser.PosError{
		Pos: node.Pos(),
		Err: fmt.Errorf("%s: unknown type for string %T", name, node),
	}
}

func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error {
	var item *ast.ObjectItem
	if it, ok := node.(*ast.ObjectItem); ok {
		item = it
		node = it.Val
	}

	if ot, ok := node.(*ast.ObjectType); ok {
		node = ot.List
	}

	// Handle the special case where the object itself is a literal. Previously
	// the yacc parser would always ensure top-level elements were arrays. The new
	// parser does not make the same guarantees, thus we need to convert any
	// top-level literal elements into a list.
	if _, ok := node.(*ast.LiteralType); ok && item != nil {
		node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
	}

	list, ok := node.(*ast.ObjectList)
	if !ok {
		return &parser.PosError{
			Pos: node.Pos(),
			Err: fmt.Errorf("%s: not an object type for struct (%T)", name, node),
		}
	}

	// This slice will keep track of all the structs we'll be decoding.
	// There can be more than one struct if there are embedded structs
	// that are squashed.
	structs := make([]reflect.Value, 1, 5)
	structs[0] = result

	// Compile the list of all the fields that we're going to be decoding
	// from all the structs.
	fields := make(map[*reflect.StructField]reflect.Value)
	for len(structs) > 0 {
		structVal := structs[0]
		structs = structs[1:]

		structType := structVal.Type()
		for i := 0; i < structType.NumField(); i++ {
			fieldType := structType.Field(i)
			tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")

			// Ignore fields with tag name "-"
			if tagParts[0] == "-" {
				continue
			}

			if fieldType.Anonymous {
				fieldKind := fieldType.Type.Kind()
				if fieldKind != reflect.Struct {
					return &parser.PosError{
						Pos: node.Pos(),
						Err: fmt.Errorf("%s: unsupported type to struct: %s",
							fieldType.Name, fieldKind),
					}
				}

				// We have an embedded field. We "squash" the fields down
				// if specified in the tag.
				squash := false
				for _, tag := range tagParts[1:] {
					if tag == "squash" {
						squash = true
						break
					}
				}

				if squash {
					structs = append(
						structs, result.FieldByName(fieldType.Name))
					continue
				}
			}

			// Normal struct field, store it away
			fields[&fieldType] = structVal.Field(i)
		}
	}

	usedKeys := make(map[string]struct{})
	decodedFields := make([]string, 0, len(fields))
	decodedFieldsVal := make([]reflect.Value, 0)
	unusedKeysVal := make([]reflect.Value, 0)
	for fieldType, field := range fields {
		if !field.IsValid() {
			// This should never happen
			panic("field is not valid")
		}

		// If we can't set the field, then it is unexported or something,
		// and we just continue onwards.
		if !field.CanSet() {
			continue
		}

		fieldName := fieldType.Name

		tagValue := fieldType.Tag.Get(tagName)
		tagParts := strings.SplitN(tagValue, ",", 2)
		if len(tagParts) >= 2 {
			switch tagParts[1] {
			case "decodedFields":
				decodedFieldsVal = append(decodedFieldsVal, field)
				continue
			case "key":
				if item == nil {
					return &parser.PosError{
						Pos: node.Pos(),
						Err: fmt.Errorf("%s: %s asked for 'key', impossible",
							name, fieldName),
					}
				}

				field.SetString(item.Keys[0].Token.Value().(string))
				continue
			case "unusedKeys":
				unusedKeysVal = append(unusedKeysVal, field)
				continue
			}
		}

		if tagParts[0] != "" {
			fieldName = tagParts[0]
		}

		// Determine the element we'll use to decode. If it is a single
		// match (only object with the field), then we decode it exactly.
		// If it is a prefix match, then we decode the matches.
		filter := list.Filter(fieldName)

		prefixMatches := filter.Children()
		matches := filter.Elem()
		if len(matches.Items) == 0 && len(prefixMatches.Items) == 0 {
			continue
		}

		// Track the used key
		usedKeys[fieldName] = struct{}{}

		// Create the field name and decode. We range over the elements
		// because we actually want the value.
		fieldName = fmt.Sprintf("%s.%s", name, fieldName)
		if len(prefixMatches.Items) > 0 {
			if err := d.decode(fieldName, prefixMatches, field); err != nil {
				return err
			}
		}
		for _, match := range matches.Items {
			var decodeNode ast.Node = match.Val
			if ot, ok := decodeNode.(*ast.ObjectType); ok {
				decodeNode = &ast.ObjectList{Items: ot.List.Items}
			}

			if err := d.decode(fieldName, decodeNode, field); err != nil {
				return err
			}
		}

		decodedFields = append(decodedFields, fieldType.Name)
	}

	if len(decodedFieldsVal) > 0 {
		// Sort it so that it is deterministic
		sort.Strings(decodedFields)

		for _, v := range decodedFieldsVal {
			v.Set(reflect.ValueOf(decodedFields))
		}
	}

	return nil
}

// findNodeType returns the type of ast.Node
func findNodeType() reflect.Type {
	var nodeContainer struct {
		Node ast.Node
	}
	value := reflect.ValueOf(nodeContainer).FieldByName("Node")
	return value.Type()
}