aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/pelletier/go-toml/toml.go
blob: c0e1ad2e60b7952b93bfe6451d19827d10b8d35d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
package toml

import (
	"errors"
	"fmt"
	"io"
	"os"
	"runtime"
	"strings"
)

type tomlValue struct {
	value    interface{}
	position Position
}

// TomlTree is the result of the parsing of a TOML file.
type TomlTree struct {
	values   map[string]interface{}
	position Position
}

func newTomlTree() *TomlTree {
	return &TomlTree{
		values:   make(map[string]interface{}),
		position: Position{},
	}
}

// TreeFromMap initializes a new TomlTree object using the given map.
func TreeFromMap(m map[string]interface{}) *TomlTree {
	return &TomlTree{
		values: m,
	}
}

// Has returns a boolean indicating if the given key exists.
func (t *TomlTree) Has(key string) bool {
	if key == "" {
		return false
	}
	return t.HasPath(strings.Split(key, "."))
}

// HasPath returns true if the given path of keys exists, false otherwise.
func (t *TomlTree) HasPath(keys []string) bool {
	return t.GetPath(keys) != nil
}

// Keys returns the keys of the toplevel tree.
// Warning: this is a costly operation.
func (t *TomlTree) Keys() []string {
	var keys []string
	for k := range t.values {
		keys = append(keys, k)
	}
	return keys
}

// Get the value at key in the TomlTree.
// Key is a dot-separated path (e.g. a.b.c).
// Returns nil if the path does not exist in the tree.
// If keys is of length zero, the current tree is returned.
func (t *TomlTree) Get(key string) interface{} {
	if key == "" {
		return t
	}
	comps, err := parseKey(key)
	if err != nil {
		return nil
	}
	return t.GetPath(comps)
}

// GetPath returns the element in the tree indicated by 'keys'.
// If keys is of length zero, the current tree is returned.
func (t *TomlTree) GetPath(keys []string) interface{} {
	if len(keys) == 0 {
		return t
	}
	subtree := t
	for _, intermediateKey := range keys[:len(keys)-1] {
		value, exists := subtree.values[intermediateKey]
		if !exists {
			return nil
		}
		switch node := value.(type) {
		case *TomlTree:
			subtree = node
		case []*TomlTree:
			// go to most recent element
			if len(node) == 0 {
				return nil
			}
			subtree = node[len(node)-1]
		default:
			return nil // cannot navigate through other node types
		}
	}
	// branch based on final node type
	switch node := subtree.values[keys[len(keys)-1]].(type) {
	case *tomlValue:
		return node.value
	default:
		return node
	}
}

// GetPosition returns the position of the given key.
func (t *TomlTree) GetPosition(key string) Position {
	if key == "" {
		return t.position
	}
	return t.GetPositionPath(strings.Split(key, "."))
}

// GetPositionPath returns the element in the tree indicated by 'keys'.
// If keys is of length zero, the current tree is returned.
func (t *TomlTree) GetPositionPath(keys []string) Position {
	if len(keys) == 0 {
		return t.position
	}
	subtree := t
	for _, intermediateKey := range keys[:len(keys)-1] {
		value, exists := subtree.values[intermediateKey]
		if !exists {
			return Position{0, 0}
		}
		switch node := value.(type) {
		case *TomlTree:
			subtree = node
		case []*TomlTree:
			// go to most recent element
			if len(node) == 0 {
				return Position{0, 0}
			}
			subtree = node[len(node)-1]
		default:
			return Position{0, 0}
		}
	}
	// branch based on final node type
	switch node := subtree.values[keys[len(keys)-1]].(type) {
	case *tomlValue:
		return node.position
	case *TomlTree:
		return node.position
	case []*TomlTree:
		// go to most recent element
		if len(node) == 0 {
			return Position{0, 0}
		}
		return node[len(node)-1].position
	default:
		return Position{0, 0}
	}
}

// GetDefault works like Get but with a default value
func (t *TomlTree) GetDefault(key string, def interface{}) interface{} {
	val := t.Get(key)
	if val == nil {
		return def
	}
	return val
}

// Set an element in the tree.
// Key is a dot-separated path (e.g. a.b.c).
// Creates all necessary intermediates trees, if needed.
func (t *TomlTree) Set(key string, value interface{}) {
	t.SetPath(strings.Split(key, "."), value)
}

// SetPath sets an element in the tree.
// Keys is an array of path elements (e.g. {"a","b","c"}).
// Creates all necessary intermediates trees, if needed.
func (t *TomlTree) SetPath(keys []string, value interface{}) {
	subtree := t
	for _, intermediateKey := range keys[:len(keys)-1] {
		nextTree, exists := subtree.values[intermediateKey]
		if !exists {
			nextTree = newTomlTree()
			subtree.values[intermediateKey] = nextTree // add new element here
		}
		switch node := nextTree.(type) {
		case *TomlTree:
			subtree = node
		case []*TomlTree:
			// go to most recent element
			if len(node) == 0 {
				// create element if it does not exist
				subtree.values[intermediateKey] = append(node, newTomlTree())
			}
			subtree = node[len(node)-1]
		}
	}

	var toInsert interface{}

	switch value.(type) {
	case *TomlTree:
		toInsert = value
	case []*TomlTree:
		toInsert = value
	case *tomlValue:
		toInsert = value
	default:
		toInsert = &tomlValue{value: value}
	}

	subtree.values[keys[len(keys)-1]] = toInsert
}

// createSubTree takes a tree and a key and create the necessary intermediate
// subtrees to create a subtree at that point. In-place.
//
// e.g. passing a.b.c will create (assuming tree is empty) tree[a], tree[a][b]
// and tree[a][b][c]
//
// Returns nil on success, error object on failure
func (t *TomlTree) createSubTree(keys []string, pos Position) error {
	subtree := t
	for _, intermediateKey := range keys {
		if intermediateKey == "" {
			return fmt.Errorf("empty intermediate table")
		}
		nextTree, exists := subtree.values[intermediateKey]
		if !exists {
			tree := newTomlTree()
			tree.position = pos
			subtree.values[intermediateKey] = tree
			nextTree = tree
		}

		switch node := nextTree.(type) {
		case []*TomlTree:
			subtree = node[len(node)-1]
		case *TomlTree:
			subtree = node
		default:
			return fmt.Errorf("unknown type for path %s (%s): %T (%#v)",
				strings.Join(keys, "."), intermediateKey, nextTree, nextTree)
		}
	}
	return nil
}

// Query compiles and executes a query on a tree and returns the query result.
func (t *TomlTree) Query(query string) (*QueryResult, error) {
	q, err := CompileQuery(query)
	if err != nil {
		return nil, err
	}
	return q.Execute(t), nil
}

// LoadReader creates a TomlTree from any io.Reader.
func LoadReader(reader io.Reader) (tree *TomlTree, err error) {
	defer func() {
		if r := recover(); r != nil {
			if _, ok := r.(runtime.Error); ok {
				panic(r)
			}
			err = errors.New(r.(string))
		}
	}()
	tree = parseToml(lexToml(reader))
	return
}

// Load creates a TomlTree from a string.
func Load(content string) (tree *TomlTree, err error) {
	return LoadReader(strings.NewReader(content))
}

// LoadFile creates a TomlTree from a file.
func LoadFile(path string) (tree *TomlTree, err error) {
	file, err := os.Open(path)
	if err != nil {
		return nil, err
	}
	defer file.Close()
	return LoadReader(file)
}