aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go
blob: 523751f7f690a460941f5842113e08968f62497f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package ChaCha20 implements the core ChaCha20 function as specified
// in https://tools.ietf.org/html/rfc7539#section-2.3.
package chacha20

import (
	"crypto/cipher"
	"encoding/binary"

	"golang.org/x/crypto/internal/subtle"
)

// assert that *Cipher implements cipher.Stream
var _ cipher.Stream = (*Cipher)(nil)

// Cipher is a stateful instance of ChaCha20 using a particular key
// and nonce. A *Cipher implements the cipher.Stream interface.
type Cipher struct {
	key     [8]uint32
	counter uint32 // incremented after each block
	nonce   [3]uint32
	buf     [bufSize]byte // buffer for unused keystream bytes
	len     int           // number of unused keystream bytes at end of buf
}

// New creates a new ChaCha20 stream cipher with the given key and nonce.
// The initial counter value is set to 0.
func New(key [8]uint32, nonce [3]uint32) *Cipher {
	return &Cipher{key: key, nonce: nonce}
}

// XORKeyStream XORs each byte in the given slice with a byte from the
// cipher's key stream. Dst and src must overlap entirely or not at all.
//
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
// to pass a dst bigger than src, and in that case, XORKeyStream will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to XORKeyStream behave as if the concatenation of
// the src buffers was passed in a single run. That is, Cipher
// maintains state and does not reset at each XORKeyStream call.
func (s *Cipher) XORKeyStream(dst, src []byte) {
	if len(dst) < len(src) {
		panic("chacha20: output smaller than input")
	}
	if subtle.InexactOverlap(dst[:len(src)], src) {
		panic("chacha20: invalid buffer overlap")
	}

	// xor src with buffered keystream first
	if s.len != 0 {
		buf := s.buf[len(s.buf)-s.len:]
		if len(src) < len(buf) {
			buf = buf[:len(src)]
		}
		td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
		for i, b := range buf {
			td[i] = ts[i] ^ b
		}
		s.len -= len(buf)
		if s.len != 0 {
			return
		}
		s.buf = [len(s.buf)]byte{} // zero the empty buffer
		src = src[len(buf):]
		dst = dst[len(buf):]
	}

	if len(src) == 0 {
		return
	}
	if haveAsm {
		s.xorKeyStreamAsm(dst, src)
		return
	}

	// set up a 64-byte buffer to pad out the final block if needed
	// (hoisted out of the main loop to avoid spills)
	rem := len(src) % 64  // length of final block
	fin := len(src) - rem // index of final block
	if rem > 0 {
		copy(s.buf[len(s.buf)-64:], src[fin:])
	}

	// qr calculates a quarter round
	qr := func(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
		a += b
		d ^= a
		d = (d << 16) | (d >> 16)
		c += d
		b ^= c
		b = (b << 12) | (b >> 20)
		a += b
		d ^= a
		d = (d << 8) | (d >> 24)
		c += d
		b ^= c
		b = (b << 7) | (b >> 25)
		return a, b, c, d
	}

	// ChaCha20 constants
	const (
		j0 = 0x61707865
		j1 = 0x3320646e
		j2 = 0x79622d32
		j3 = 0x6b206574
	)

	// pre-calculate most of the first round
	s1, s5, s9, s13 := qr(j1, s.key[1], s.key[5], s.nonce[0])
	s2, s6, s10, s14 := qr(j2, s.key[2], s.key[6], s.nonce[1])
	s3, s7, s11, s15 := qr(j3, s.key[3], s.key[7], s.nonce[2])

	n := len(src)
	src, dst = src[:n:n], dst[:n:n] // BCE hint
	for i := 0; i < n; i += 64 {
		// calculate the remainder of the first round
		s0, s4, s8, s12 := qr(j0, s.key[0], s.key[4], s.counter)

		// execute the second round
		x0, x5, x10, x15 := qr(s0, s5, s10, s15)
		x1, x6, x11, x12 := qr(s1, s6, s11, s12)
		x2, x7, x8, x13 := qr(s2, s7, s8, s13)
		x3, x4, x9, x14 := qr(s3, s4, s9, s14)

		// execute the remaining 18 rounds
		for i := 0; i < 9; i++ {
			x0, x4, x8, x12 = qr(x0, x4, x8, x12)
			x1, x5, x9, x13 = qr(x1, x5, x9, x13)
			x2, x6, x10, x14 = qr(x2, x6, x10, x14)
			x3, x7, x11, x15 = qr(x3, x7, x11, x15)

			x0, x5, x10, x15 = qr(x0, x5, x10, x15)
			x1, x6, x11, x12 = qr(x1, x6, x11, x12)
			x2, x7, x8, x13 = qr(x2, x7, x8, x13)
			x3, x4, x9, x14 = qr(x3, x4, x9, x14)
		}

		x0 += j0
		x1 += j1
		x2 += j2
		x3 += j3

		x4 += s.key[0]
		x5 += s.key[1]
		x6 += s.key[2]
		x7 += s.key[3]
		x8 += s.key[4]
		x9 += s.key[5]
		x10 += s.key[6]
		x11 += s.key[7]

		x12 += s.counter
		x13 += s.nonce[0]
		x14 += s.nonce[1]
		x15 += s.nonce[2]

		// increment the counter
		s.counter += 1
		if s.counter == 0 {
			panic("chacha20: counter overflow")
		}

		// pad to 64 bytes if needed
		in, out := src[i:], dst[i:]
		if i == fin {
			// src[fin:] has already been copied into s.buf before
			// the main loop
			in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
		}
		in, out = in[:64], out[:64] // BCE hint

		// XOR the key stream with the source and write out the result
		xor(out[0:], in[0:], x0)
		xor(out[4:], in[4:], x1)
		xor(out[8:], in[8:], x2)
		xor(out[12:], in[12:], x3)
		xor(out[16:], in[16:], x4)
		xor(out[20:], in[20:], x5)
		xor(out[24:], in[24:], x6)
		xor(out[28:], in[28:], x7)
		xor(out[32:], in[32:], x8)
		xor(out[36:], in[36:], x9)
		xor(out[40:], in[40:], x10)
		xor(out[44:], in[44:], x11)
		xor(out[48:], in[48:], x12)
		xor(out[52:], in[52:], x13)
		xor(out[56:], in[56:], x14)
		xor(out[60:], in[60:], x15)
	}
	// copy any trailing bytes out of the buffer and into dst
	if rem != 0 {
		s.len = 64 - rem
		copy(dst[fin:], s.buf[len(s.buf)-64:])
	}
}

// Advance discards bytes in the key stream until the next 64 byte block
// boundary is reached and updates the counter accordingly. If the key
// stream is already at a block boundary no bytes will be discarded and
// the counter will be unchanged.
func (s *Cipher) Advance() {
	s.len -= s.len % 64
	if s.len == 0 {
		s.buf = [len(s.buf)]byte{}
	}
}

// XORKeyStream crypts bytes from in to out using the given key and counters.
// In and out must overlap entirely or not at all. Counter contains the raw
// ChaCha20 counter bytes (i.e. block counter followed by nonce).
func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
	s := Cipher{
		key: [8]uint32{
			binary.LittleEndian.Uint32(key[0:4]),
			binary.LittleEndian.Uint32(key[4:8]),
			binary.LittleEndian.Uint32(key[8:12]),
			binary.LittleEndian.Uint32(key[12:16]),
			binary.LittleEndian.Uint32(key[16:20]),
			binary.LittleEndian.Uint32(key[20:24]),
			binary.LittleEndian.Uint32(key[24:28]),
			binary.LittleEndian.Uint32(key[28:32]),
		},
		nonce: [3]uint32{
			binary.LittleEndian.Uint32(counter[4:8]),
			binary.LittleEndian.Uint32(counter[8:12]),
			binary.LittleEndian.Uint32(counter[12:16]),
		},
		counter: binary.LittleEndian.Uint32(counter[0:4]),
	}
	s.XORKeyStream(out, in)
}