aboutsummaryrefslogtreecommitdiff
path: root/docs/INTERNALS
blob: e0553409c8c7817a85c2f398999650c04b24b3fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                                       Updated for curl 7.7 on March 13, 2001
                                  _   _ ____  _     
                              ___| | | |  _ \| |    
                             / __| | | | |_) | |    
                            | (__| |_| |  _ <| |___ 
                             \___|\___/|_| \_\_____|

INTERNALS

 The project is split in two. The library and the client. The client part uses
 the library, but the library is designed to allow other applications to use
 it.

 The largest amount of code and complexity is in the library part.

CVS
===
 All changes to the sources are committed to the CVS repository as soon as
 they're somewhat verified to work. Changes shall be commited as independently
 as possible so that individual changes can be easier spotted and tracked
 afterwards.

 Tagging shall be used extensively, and by the time we release new archives we
 should tag the sources with a name similar to the released version number.

Windows vs Unix
===============

 There are a few differences in how to program curl the unix way compared to
 the Windows way. The four perhaps most notable details are:

 1. Different function names for socket operations.

   In curl, this is solved with defines and macros, so that the source looks
   the same at all places except for the header file that defines them. The
   macros in use are sclose(), sread() and swrite().

 2. Windows requires a couple of init calls for the socket stuff.

   Those must be made by the application that uses libcurl, in curl that means
   src/main.c has some code #ifdef'ed to do just that.

 3. The file descriptors for network communication and file operations are
    not easily interchangable as in unix.

   We avoid this by not trying any funny tricks on file descriptors.

 4. When writing data to stdout, Windows makes end-of-lines the DOS way, thus
    destroying binary data, although you do want that conversion if it is
    text coming through... (sigh)

   We set stdout to binary under windows

 Inside the source code, We make an effort to avoid '#ifdef [Your OS]'. All
 conditionals that deal with features *should* instead be in the format
 '#ifdef HAVE_THAT_WEIRD_FUNCTION'. Since Windows can't run configure scripts,
 we maintain two config-win32.h files (one in / and one in src/) that are
 supposed to look exactly as a config.h file would have looked like on a
 Windows machine!

 Generally speaking: always remember that this will be compiled on dozens of
 operating systems. Don't walk on the edge.

Library
=======

 There are plenty of entry points to the library, namely each publicly defined
 function that libcurl offers to applications. All of those functions are
 rather small and easy-to-follow. All the ones prefixed with 'curl_easy' are
 put in the lib/easy.c file.

 All printf()-style functions use the supplied clones in lib/mprintf.c. This
 makes sure we stay absolutely platform independent.

 curl_easy_init() allocates an internal struct and makes some initializations.
 The returned handle does not revail internals.

 curl_easy_setopt() takes a three arguments, where the option stuff must be
 passed in pairs, the parameter-ID and the parameter-value. The list of
 options is documented in the man page.

 curl_easy_perform() does a whole lot of things:

 It starts off in the lib/easy.c file by calling curl_transfer(), but the main
 work is lib/url.c. The function first analyzes the URL, it separates the
 different components and connects to the remote host. This may involve using
 a proxy and/or using SSL. The Curl_gethost() function in lib/hostip.c is used
 for looking up host names.

 When connected, the proper protocol-specific function is called. The
 functions are named after the protocols they handle. Curl_ftp(), Curl_http(),
 Curl_dict(), etc. They all reside in their respective files (ftp.c, http.c
 and dict.c).

 The protocol-specific functions of course deal with protocol-specific
 negotiations and setup. They have access to the Curl_sendf() (from
 lib/sendf.c) function to send printf-style formatted data to the remote host
 and when they're ready to make the actual file transfer they call the
 Curl_Transfer() function (in lib/transfer.c) to setup the transfer and
 returns. Curl_perform() then calls Transfer() in lib/transfer.c that performs
 the entire file transfer. Curl_perform() is what does the main "connect - do
 - transfer - done" loop. It loops if there's a Location: to follow.

 During transfer, the progress functions in lib/progress.c are called at a
 frequent interval (or at the user's choice, a specified callback might get
 called). The speedcheck functions in lib/speedcheck.c are also used to verify
 that the transfer is as fast as required.

 When completed, the curl_easy_cleanup() should be called to free up used
 resources.

 A quick roundup on internal function sequences (many of these call
 protocol-specific function-pointers):

  curl_connect - connects to a remote site and does initial connect fluff
   This also checks for an existing connection to the requested site and uses
   that one if it is possible.

   curl_do - starts a transfer
    curl_transfer() - transfers data
   curl_done - ends a transfer

  curl_disconnect - disconnects from a remote site. This is called when the
   disconnect is really requested, which doesn't necessarily have to be
   exactly after curl_done in case we want to keep the connection open for
   a while.

 HTTP(S)

 HTTP offers a lot and is the protocol in curl that uses the most lines of
 code. There is a special file (lib/formdata.c) that offers all the multipart
 post functions.

 base64-functions for user+password stuff (and more) is in (lib/base64.c) and
 all functions for parsing and sending cookies are found in (lib/cookie.c).

 HTTPS uses in almost every means the same procedure as HTTP, with only two
 exceptions: the connect procedure is different and the function used to read
 or write from the socket is different, although the latter fact is hidden in
 the source by the use of curl_read() for reading and curl_write() for writing
 data to the remote server.

 http_chunks.c contains functions that understands HTTP 1.1 chunked transfer
 encoding.

 An interesting detail with the HTTP(S) request, is the add_buffer() series of
 functions we use. They append data to one single buffer, and when the
 building is done the entire request is sent off in one single write. This is
 done this way to overcome problems with flawed firewalls and lame servers.

 FTP

 The Curl_if2ip() function can be used for getting the IP number of a
 specified network interface, and it resides in lib/if2ip.c.

 Curl_ftpsendf() is used for sending FTP commands to the remote server. It was
 made a separate function to prevent us programmers from forgetting that they
 must be CRLF terminated. They must also be sent in one single write() to make
 firewalls and similar happy.

 Kerberos

 The kerberos support is mainly in lib/krb4.c and lib/security.c.

 TELNET

 Telnet is implemented in lib/telnet.c.

 FILE

 The file:// protocol is dealt with in lib/file.c.

 LDAP

 Everything LDAP is in lib/ldap.c.

 GENERAL

 URL encoding and decoding, called escaping and unescaping in the source code,
 is found in lib/escape.c.

 While transfering data in Transfer() a few functions might get
 used. curl_getdate() in lib/getdate.c is for HTTP date comparisons (and
 more).

 lib/getenv.c offers curl_getenv() which is for reading environment variables
 in a neat platform independent way. That's used in the client, but also in
 lib/url.c when checking the proxy environment variables. Note that contrary
 to the normal unix getenv(), this returns an allocated buffer that must be
 free()ed after use.

 lib/netrc.c holds the .netrc parser

 lib/timeval.c features replacement functions for systems that don't have
 gettimeofday() and a few support functions for timeval convertions.
 
 A function named curl_version() that returns the full curl version string is
 found in lib/version.c.

 If authentication is requested but no password is given, a getpass_r() clone
 exists in lib/getpass.c. libcurl offers a custom callback that can be used
 instead of this, but it doesn't change much to us.

Persistent Connections
======================

 With curl 7.7, we added persistent connection support to libcurl which has
 introduced a somewhat different treatmeant of things inside of libcurl.

 o The 'UrlData' struct returned in the curl_easy_init() call must never
   hold connection-oriented data. It is meant to hold the root data as well
   as all the options etc that the library-user may choose.
 o The 'UrlData' struct holds the cache array of pointers to 'connectdata'
   structs. There's one connectdata struct for each connection that libcurl
   knows about.
 o This also enables the 'curl handle' to be reused on subsequent transfers,
   something that was illegal in pre-7.7 versions.
 o When we are about to perform a transfer with curl_easy_perform(), we first
   check for an already existing connection in the cache that we can use,
   otherwise we create a new one and add to the cache. If the cache is full
   already when we add a new connection, we close one of the present ones. We
   select which one to close dependent on the close policy that may have been
   previously set.
 o When the tranfer operation is complete, we try to leave the connection open.
   Particular options may tell us not to, and protocols may signal closure on
   connections and then we don't keep it open of course.
 o When curl_easy_cleanup() is called, we close all still opened connections.

 You do realize that the curl handle must be re-used in order for the
 persistent connections to work.

Library Symbols
===============
 
 All symbols used internally in libcurl must use a 'Curl_' prefix if they're
 used in more than a single file. Single-file symbols must be made
 static. Public (exported) symbols must use a 'curl_' prefix. (There are
 exceptions, but they are destined to be changed to follow this pattern in the
 future.)

Return Codes and Informationals
===============================

 I've made things simple. Almost every function in libcurl returns a CURLcode,
 that must be CURLE_OK if everything is OK or otherwise a suitable error code
 as the curl/curl.h include file defines. The very spot that detects an error
 must use the Curl_failf() function to set the human-readable error
 description.

 In aiding the user to understand what's happening and to debug curl usage, we
 must supply a fair amount of informational messages by using the Curl_infof()
 function. Those messages are only displayed when the user explicitly asks for
 them. They are best used when revealing information that isn't otherwise
 obvious.

Client
======

 main() resides in src/main.c together with most of the client code.
 src/hugehelp.c is automatically generated by the mkhelp.pl perl script to
 display the complete "manual" and the src/urlglob.c file holds the functions
 used for the URL-"globbing" support. Globbing in the sense that the {} and []
 expansion stuff is there.

 The client mostly messes around to setup its 'config' struct properly, then
 it calls the curl_easy_*() functions of the library and when it gets back
 control after the curl_easy_perform() it cleans up the library, checks status
 and exits.

 When the operation is done, the ourWriteOut() function in src/writeout.c may
 be called to report about the operation. That function is using the
 curl_easy_getinfo() function to extract useful information from the curl
 session.

 Recent versions may loop and do all that several times if many URLs were
 specified on the command line or config file.

Memory Debugging
================

 The file named lib/memdebug.c contains debug-versions of a few
 functions. Functions such as malloc, free, fopen, fclose, etc that somehow
 deal with resources that might give us problems if we "leak" them. The
 functions in the memdebug system do nothing fancy, they do their normal
 function and then log information about what they just did. The logged data
 can then be analyzed after a complete session,

 memanalyze.pl is a perl script present only present in CVS (not part of the
 release archives) that analyzes a log file generated by the memdebug
 system. It detects if resources are allocated but never freed and other kinds
 of errors related to resource management.

 Use -DMALLOCDEBUG when compiling to enable memory debugging.

Test Suite
==========

 Since November 2000, a test suite has evolved. It is placed in its own
 subdirectory directly off the root in the curl archive tree, and it contains
 a bunch of scripts and a lot of test case data.

 The main test script is runtests.pl that will invoke the two servers
 httpserver.pl and ftpserver.pl before all the test cases are performed. The
 test suite currently only runs on unix-like platforms.

 You'll find a complete description of the test case data files in the
 tests/README file.

 The test suite automatically detects if curl was built with the memory
 debugging enabled, and if it was it will detect memory leaks too.

Building Releases
=================

 There's no magic to this. When you consider everything stable enough to be
 released, run the 'maketgz' script (using 'make distcheck' will give you a
 pretty good view on the status of the current sources). maketgz prompts for
 version number of the client and the library before it creates a release
 archive. maketgz uses 'make dist' for the actual archive building, why you
 need to fill in the Makefile.am files properly for which files that should
 be included in the release archives.