1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
_ _ ____ _
___| | | | _ \| |
/ __| | | | |_) | |
| (__| |_| | _ <| |___
\___|\___/|_| \_\_____|
The cURL Test Suite
Requires:
perl (and a unix-style shell)
diff (when a test fail, a diff is shown)
stunnel (for HTTPS and FTPS tests)
sshd (for SCP and SFTP tests; OpenSSH ver. 3.8 is known to work)
ssh (for SOCKS4 and SOCK5 tests; OpenSSH ver. 4.5 is known to work.
OpenSSH version 3.7 or greater is needed for SOCKS5)
TCP ports used by default:
- 8990 on localhost for HTTP tests
- 8991 on localhost for HTTPS tests
- 8994 on localhost for HTTP IPv6 tests
- 8992 on localhost for FTP tests
- 8995 on localhost for FTP (2) tests
- 8993 on localhost for FTPS tests
- 8996 on localhost for FTP IPv6 tests
- 8997 on localhost for TFTP tests
- 8999 on localhost for SCP/SFTP tests
- 9000 on localhost for SOCKS tests
The test suite runs simple FTP, HTTP and TFTP servers on these ports to
which it makes requests. For SSL tests, it runs stunnel to handle
encryption to the regular servers. For SSH, it runs a standard OpenSSH
server. For SOCKS4/5 tests SSH is used to perform the SOCKS functionality
and requires a SSH client and server.
The base port number shown above can be changed using runtests' -b option
to allow running more than one instance of the test suite simultaneously
on one machine.
Run:
'make test'. This invokes the 'runtests.pl' perl script. Edit the top
variables of that script in case you have some specific needs.
The script breaks on the first test that doesn't do OK. Use -a to prevent
the script from abort on the first error. Run the script with -v for more
verbose output. Use -d to run the test servers with debug output enabled as
well. Specifying -k keeps all the log files generated by the test intact.
Use -s for shorter output, or pass test numbers to run specific tests only
(like "./runtests.pl 3 4" to test 3 and 4 only). It also supports test case
ranges with 'to', as in "./runtests 3 to 9" which runs the seven tests from
3 to 9. Any test numbers starting with ! are disabled, as are any test
numbers found in the file data/DISABLED (one per line).
Memory:
The test script will check that all allocated memory is freed properly IF
curl has been built with the CURLDEBUG define set. The script will
automatically detect if that is the case, and it will use the ../memanalyze
script to analyze the memory debugging output.
Debug:
If a test case fails, you can conveniently get the script to invoke the
debugger (gdb) for you with the server running and the exact same command
line parameters that failed. Just invoke 'runtests.pl <test number> -g' and
then just type 'run' in the debugger to perform the command through the
debugger.
If a test case causes a core dump, analyze it by running gdb like:
# gdb ../curl/src core
... and get a stack trace with the gdb command:
(gdb) where
Logs:
All logs are generated in the logs/ subdirectory (it is emptied first
in the runtests.pl script). Use runtests.pl -k to keep the temporary files
after the test run.
Data:
All test cases are put in the data/ subdirectory. Each test is stored in the
file named according to the test number.
See FILEFORMAT for the description of the test case files.
Code coverage:
gcc provides a tool that can determine the code coverage figures for
the test suite. To use it, configure curl with
CFLAGS='-fprofile-arcs -ftest-coverage -g -O0'. Make sure you run the normal
and torture tests to get more full coverage, i.e. do:
make test
cd tests
make torture-test
The graphical tool ggcov can be used to browse the source and create
coverage reports on *NIX hosts:
ggcov -r lib src
The text mode tool gcov may also be used, but it doesn't handle object files
in more than one directory very well.
TEST CASE NUMBERS
So far, I've used this system:
1 - 99 HTTP
100 - 199 FTP*
200 - 299 FILE*
300 - 399 HTTPS
400 - 499 FTPS
500 - 599 libcurl source code tests, not using the curl command tool
600 - 699 SCP/SFTP
700 - 799 SOCKS4 (even numbers) and SOCK5 (odd numbers)
1000 - x miscellaneous*
Since 30-apr-2003, there's nothing in the system that requires us to keep
within these number series, and those sections marked with * actually
contain tests for a variety of protocols. Each test case now specifies
its own server requirements, independent of test number.
TODO:
* Add tests for TELNET, LDAP, DICT...
* SOCKS4/5 test deficiencies - no proxy authentication tests as SSH (the
test mechanism) doesn't support them
|