aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/hashicorp/hcl
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/github.com/hashicorp/hcl')
-rw-r--r--vendor/github.com/hashicorp/hcl/LICENSE354
-rw-r--r--vendor/github.com/hashicorp/hcl/Makefile18
-rw-r--r--vendor/github.com/hashicorp/hcl/README.md125
-rw-r--r--vendor/github.com/hashicorp/hcl/appveyor.yml19
-rw-r--r--vendor/github.com/hashicorp/hcl/decoder.go729
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl.go11
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/ast/ast.go219
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/ast/walk.go52
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/parser/error.go17
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/parser/parser.go532
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go789
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/printer/printer.go66
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/scanner/scanner.go652
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/strconv/quote.go241
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/token/position.go46
-rw-r--r--vendor/github.com/hashicorp/hcl/hcl/token/token.go219
-rw-r--r--vendor/github.com/hashicorp/hcl/json/parser/flatten.go117
-rw-r--r--vendor/github.com/hashicorp/hcl/json/parser/parser.go313
-rw-r--r--vendor/github.com/hashicorp/hcl/json/scanner/scanner.go451
-rw-r--r--vendor/github.com/hashicorp/hcl/json/token/position.go46
-rw-r--r--vendor/github.com/hashicorp/hcl/json/token/token.go118
-rw-r--r--vendor/github.com/hashicorp/hcl/lex.go38
-rw-r--r--vendor/github.com/hashicorp/hcl/parse.go39
23 files changed, 0 insertions, 5211 deletions
diff --git a/vendor/github.com/hashicorp/hcl/LICENSE b/vendor/github.com/hashicorp/hcl/LICENSE
deleted file mode 100644
index c33dcc7..0000000
--- a/vendor/github.com/hashicorp/hcl/LICENSE
+++ /dev/null
@@ -1,354 +0,0 @@
-Mozilla Public License, version 2.0
-
-1. Definitions
-
-1.1. “Contributor”
-
- means each individual or legal entity that creates, contributes to the
- creation of, or owns Covered Software.
-
-1.2. “Contributor Version”
-
- means the combination of the Contributions of others (if any) used by a
- Contributor and that particular Contributor’s Contribution.
-
-1.3. “Contribution”
-
- means Covered Software of a particular Contributor.
-
-1.4. “Covered Software”
-
- means Source Code Form to which the initial Contributor has attached the
- notice in Exhibit A, the Executable Form of such Source Code Form, and
- Modifications of such Source Code Form, in each case including portions
- thereof.
-
-1.5. “Incompatible With Secondary Licenses”
- means
-
- a. that the initial Contributor has attached the notice described in
- Exhibit B to the Covered Software; or
-
- b. that the Covered Software was made available under the terms of version
- 1.1 or earlier of the License, but not also under the terms of a
- Secondary License.
-
-1.6. “Executable Form”
-
- means any form of the work other than Source Code Form.
-
-1.7. “Larger Work”
-
- means a work that combines Covered Software with other material, in a separate
- file or files, that is not Covered Software.
-
-1.8. “License”
-
- means this document.
-
-1.9. “Licensable”
-
- means having the right to grant, to the maximum extent possible, whether at the
- time of the initial grant or subsequently, any and all of the rights conveyed by
- this License.
-
-1.10. “Modifications”
-
- means any of the following:
-
- a. any file in Source Code Form that results from an addition to, deletion
- from, or modification of the contents of Covered Software; or
-
- b. any new file in Source Code Form that contains any Covered Software.
-
-1.11. “Patent Claims” of a Contributor
-
- means any patent claim(s), including without limitation, method, process,
- and apparatus claims, in any patent Licensable by such Contributor that
- would be infringed, but for the grant of the License, by the making,
- using, selling, offering for sale, having made, import, or transfer of
- either its Contributions or its Contributor Version.
-
-1.12. “Secondary License”
-
- means either the GNU General Public License, Version 2.0, the GNU Lesser
- General Public License, Version 2.1, the GNU Affero General Public
- License, Version 3.0, or any later versions of those licenses.
-
-1.13. “Source Code Form”
-
- means the form of the work preferred for making modifications.
-
-1.14. “You” (or “Your”)
-
- means an individual or a legal entity exercising rights under this
- License. For legal entities, “You” includes any entity that controls, is
- controlled by, or is under common control with You. For purposes of this
- definition, “control” means (a) the power, direct or indirect, to cause
- the direction or management of such entity, whether by contract or
- otherwise, or (b) ownership of more than fifty percent (50%) of the
- outstanding shares or beneficial ownership of such entity.
-
-
-2. License Grants and Conditions
-
-2.1. Grants
-
- Each Contributor hereby grants You a world-wide, royalty-free,
- non-exclusive license:
-
- a. under intellectual property rights (other than patent or trademark)
- Licensable by such Contributor to use, reproduce, make available,
- modify, display, perform, distribute, and otherwise exploit its
- Contributions, either on an unmodified basis, with Modifications, or as
- part of a Larger Work; and
-
- b. under Patent Claims of such Contributor to make, use, sell, offer for
- sale, have made, import, and otherwise transfer either its Contributions
- or its Contributor Version.
-
-2.2. Effective Date
-
- The licenses granted in Section 2.1 with respect to any Contribution become
- effective for each Contribution on the date the Contributor first distributes
- such Contribution.
-
-2.3. Limitations on Grant Scope
-
- The licenses granted in this Section 2 are the only rights granted under this
- License. No additional rights or licenses will be implied from the distribution
- or licensing of Covered Software under this License. Notwithstanding Section
- 2.1(b) above, no patent license is granted by a Contributor:
-
- a. for any code that a Contributor has removed from Covered Software; or
-
- b. for infringements caused by: (i) Your and any other third party’s
- modifications of Covered Software, or (ii) the combination of its
- Contributions with other software (except as part of its Contributor
- Version); or
-
- c. under Patent Claims infringed by Covered Software in the absence of its
- Contributions.
-
- This License does not grant any rights in the trademarks, service marks, or
- logos of any Contributor (except as may be necessary to comply with the
- notice requirements in Section 3.4).
-
-2.4. Subsequent Licenses
-
- No Contributor makes additional grants as a result of Your choice to
- distribute the Covered Software under a subsequent version of this License
- (see Section 10.2) or under the terms of a Secondary License (if permitted
- under the terms of Section 3.3).
-
-2.5. Representation
-
- Each Contributor represents that the Contributor believes its Contributions
- are its original creation(s) or it has sufficient rights to grant the
- rights to its Contributions conveyed by this License.
-
-2.6. Fair Use
-
- This License is not intended to limit any rights You have under applicable
- copyright doctrines of fair use, fair dealing, or other equivalents.
-
-2.7. Conditions
-
- Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
- Section 2.1.
-
-
-3. Responsibilities
-
-3.1. Distribution of Source Form
-
- All distribution of Covered Software in Source Code Form, including any
- Modifications that You create or to which You contribute, must be under the
- terms of this License. You must inform recipients that the Source Code Form
- of the Covered Software is governed by the terms of this License, and how
- they can obtain a copy of this License. You may not attempt to alter or
- restrict the recipients’ rights in the Source Code Form.
-
-3.2. Distribution of Executable Form
-
- If You distribute Covered Software in Executable Form then:
-
- a. such Covered Software must also be made available in Source Code Form,
- as described in Section 3.1, and You must inform recipients of the
- Executable Form how they can obtain a copy of such Source Code Form by
- reasonable means in a timely manner, at a charge no more than the cost
- of distribution to the recipient; and
-
- b. You may distribute such Executable Form under the terms of this License,
- or sublicense it under different terms, provided that the license for
- the Executable Form does not attempt to limit or alter the recipients’
- rights in the Source Code Form under this License.
-
-3.3. Distribution of a Larger Work
-
- You may create and distribute a Larger Work under terms of Your choice,
- provided that You also comply with the requirements of this License for the
- Covered Software. If the Larger Work is a combination of Covered Software
- with a work governed by one or more Secondary Licenses, and the Covered
- Software is not Incompatible With Secondary Licenses, this License permits
- You to additionally distribute such Covered Software under the terms of
- such Secondary License(s), so that the recipient of the Larger Work may, at
- their option, further distribute the Covered Software under the terms of
- either this License or such Secondary License(s).
-
-3.4. Notices
-
- You may not remove or alter the substance of any license notices (including
- copyright notices, patent notices, disclaimers of warranty, or limitations
- of liability) contained within the Source Code Form of the Covered
- Software, except that You may alter any license notices to the extent
- required to remedy known factual inaccuracies.
-
-3.5. Application of Additional Terms
-
- You may choose to offer, and to charge a fee for, warranty, support,
- indemnity or liability obligations to one or more recipients of Covered
- Software. However, You may do so only on Your own behalf, and not on behalf
- of any Contributor. You must make it absolutely clear that any such
- warranty, support, indemnity, or liability obligation is offered by You
- alone, and You hereby agree to indemnify every Contributor for any
- liability incurred by such Contributor as a result of warranty, support,
- indemnity or liability terms You offer. You may include additional
- disclaimers of warranty and limitations of liability specific to any
- jurisdiction.
-
-4. Inability to Comply Due to Statute or Regulation
-
- If it is impossible for You to comply with any of the terms of this License
- with respect to some or all of the Covered Software due to statute, judicial
- order, or regulation then You must: (a) comply with the terms of this License
- to the maximum extent possible; and (b) describe the limitations and the code
- they affect. Such description must be placed in a text file included with all
- distributions of the Covered Software under this License. Except to the
- extent prohibited by statute or regulation, such description must be
- sufficiently detailed for a recipient of ordinary skill to be able to
- understand it.
-
-5. Termination
-
-5.1. The rights granted under this License will terminate automatically if You
- fail to comply with any of its terms. However, if You become compliant,
- then the rights granted under this License from a particular Contributor
- are reinstated (a) provisionally, unless and until such Contributor
- explicitly and finally terminates Your grants, and (b) on an ongoing basis,
- if such Contributor fails to notify You of the non-compliance by some
- reasonable means prior to 60 days after You have come back into compliance.
- Moreover, Your grants from a particular Contributor are reinstated on an
- ongoing basis if such Contributor notifies You of the non-compliance by
- some reasonable means, this is the first time You have received notice of
- non-compliance with this License from such Contributor, and You become
- compliant prior to 30 days after Your receipt of the notice.
-
-5.2. If You initiate litigation against any entity by asserting a patent
- infringement claim (excluding declaratory judgment actions, counter-claims,
- and cross-claims) alleging that a Contributor Version directly or
- indirectly infringes any patent, then the rights granted to You by any and
- all Contributors for the Covered Software under Section 2.1 of this License
- shall terminate.
-
-5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
- license agreements (excluding distributors and resellers) which have been
- validly granted by You or Your distributors under this License prior to
- termination shall survive termination.
-
-6. Disclaimer of Warranty
-
- Covered Software is provided under this License on an “as is” basis, without
- warranty of any kind, either expressed, implied, or statutory, including,
- without limitation, warranties that the Covered Software is free of defects,
- merchantable, fit for a particular purpose or non-infringing. The entire
- risk as to the quality and performance of the Covered Software is with You.
- Should any Covered Software prove defective in any respect, You (not any
- Contributor) assume the cost of any necessary servicing, repair, or
- correction. This disclaimer of warranty constitutes an essential part of this
- License. No use of any Covered Software is authorized under this License
- except under this disclaimer.
-
-7. Limitation of Liability
-
- Under no circumstances and under no legal theory, whether tort (including
- negligence), contract, or otherwise, shall any Contributor, or anyone who
- distributes Covered Software as permitted above, be liable to You for any
- direct, indirect, special, incidental, or consequential damages of any
- character including, without limitation, damages for lost profits, loss of
- goodwill, work stoppage, computer failure or malfunction, or any and all
- other commercial damages or losses, even if such party shall have been
- informed of the possibility of such damages. This limitation of liability
- shall not apply to liability for death or personal injury resulting from such
- party’s negligence to the extent applicable law prohibits such limitation.
- Some jurisdictions do not allow the exclusion or limitation of incidental or
- consequential damages, so this exclusion and limitation may not apply to You.
-
-8. Litigation
-
- Any litigation relating to this License may be brought only in the courts of
- a jurisdiction where the defendant maintains its principal place of business
- and such litigation shall be governed by laws of that jurisdiction, without
- reference to its conflict-of-law provisions. Nothing in this Section shall
- prevent a party’s ability to bring cross-claims or counter-claims.
-
-9. Miscellaneous
-
- This License represents the complete agreement concerning the subject matter
- hereof. If any provision of this License is held to be unenforceable, such
- provision shall be reformed only to the extent necessary to make it
- enforceable. Any law or regulation which provides that the language of a
- contract shall be construed against the drafter shall not be used to construe
- this License against a Contributor.
-
-
-10. Versions of the License
-
-10.1. New Versions
-
- Mozilla Foundation is the license steward. Except as provided in Section
- 10.3, no one other than the license steward has the right to modify or
- publish new versions of this License. Each version will be given a
- distinguishing version number.
-
-10.2. Effect of New Versions
-
- You may distribute the Covered Software under the terms of the version of
- the License under which You originally received the Covered Software, or
- under the terms of any subsequent version published by the license
- steward.
-
-10.3. Modified Versions
-
- If you create software not governed by this License, and you want to
- create a new license for such software, you may create and use a modified
- version of this License if you rename the license and remove any
- references to the name of the license steward (except to note that such
- modified license differs from this License).
-
-10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
- If You choose to distribute Source Code Form that is Incompatible With
- Secondary Licenses under the terms of this version of the License, the
- notice described in Exhibit B of this License must be attached.
-
-Exhibit A - Source Code Form License Notice
-
- This Source Code Form is subject to the
- terms of the Mozilla Public License, v.
- 2.0. If a copy of the MPL was not
- distributed with this file, You can
- obtain one at
- http://mozilla.org/MPL/2.0/.
-
-If it is not possible or desirable to put the notice in a particular file, then
-You may include the notice in a location (such as a LICENSE file in a relevant
-directory) where a recipient would be likely to look for such a notice.
-
-You may add additional accurate notices of copyright ownership.
-
-Exhibit B - “Incompatible With Secondary Licenses” Notice
-
- This Source Code Form is “Incompatible
- With Secondary Licenses”, as defined by
- the Mozilla Public License, v. 2.0.
-
diff --git a/vendor/github.com/hashicorp/hcl/Makefile b/vendor/github.com/hashicorp/hcl/Makefile
deleted file mode 100644
index 84fd743..0000000
--- a/vendor/github.com/hashicorp/hcl/Makefile
+++ /dev/null
@@ -1,18 +0,0 @@
-TEST?=./...
-
-default: test
-
-fmt: generate
- go fmt ./...
-
-test: generate
- go get -t ./...
- go test $(TEST) $(TESTARGS)
-
-generate:
- go generate ./...
-
-updatedeps:
- go get -u golang.org/x/tools/cmd/stringer
-
-.PHONY: default generate test updatedeps
diff --git a/vendor/github.com/hashicorp/hcl/README.md b/vendor/github.com/hashicorp/hcl/README.md
deleted file mode 100644
index c822332..0000000
--- a/vendor/github.com/hashicorp/hcl/README.md
+++ /dev/null
@@ -1,125 +0,0 @@
-# HCL
-
-[![GoDoc](https://godoc.org/github.com/hashicorp/hcl?status.png)](https://godoc.org/github.com/hashicorp/hcl) [![Build Status](https://travis-ci.org/hashicorp/hcl.svg?branch=master)](https://travis-ci.org/hashicorp/hcl)
-
-HCL (HashiCorp Configuration Language) is a configuration language built
-by HashiCorp. The goal of HCL is to build a structured configuration language
-that is both human and machine friendly for use with command-line tools, but
-specifically targeted towards DevOps tools, servers, etc.
-
-HCL is also fully JSON compatible. That is, JSON can be used as completely
-valid input to a system expecting HCL. This helps makes systems
-interoperable with other systems.
-
-HCL is heavily inspired by
-[libucl](https://github.com/vstakhov/libucl),
-nginx configuration, and others similar.
-
-## Why?
-
-A common question when viewing HCL is to ask the question: why not
-JSON, YAML, etc.?
-
-Prior to HCL, the tools we built at [HashiCorp](http://www.hashicorp.com)
-used a variety of configuration languages from full programming languages
-such as Ruby to complete data structure languages such as JSON. What we
-learned is that some people wanted human-friendly configuration languages
-and some people wanted machine-friendly languages.
-
-JSON fits a nice balance in this, but is fairly verbose and most
-importantly doesn't support comments. With YAML, we found that beginners
-had a really hard time determining what the actual structure was, and
-ended up guessing more often than not whether to use a hyphen, colon, etc.
-in order to represent some configuration key.
-
-Full programming languages such as Ruby enable complex behavior
-a configuration language shouldn't usually allow, and also forces
-people to learn some set of Ruby.
-
-Because of this, we decided to create our own configuration language
-that is JSON-compatible. Our configuration language (HCL) is designed
-to be written and modified by humans. The API for HCL allows JSON
-as an input so that it is also machine-friendly (machines can generate
-JSON instead of trying to generate HCL).
-
-Our goal with HCL is not to alienate other configuration languages.
-It is instead to provide HCL as a specialized language for our tools,
-and JSON as the interoperability layer.
-
-## Syntax
-
-For a complete grammar, please see the parser itself. A high-level overview
-of the syntax and grammar is listed here.
-
- * Single line comments start with `#` or `//`
-
- * Multi-line comments are wrapped in `/*` and `*/`. Nested block comments
- are not allowed. A multi-line comment (also known as a block comment)
- terminates at the first `*/` found.
-
- * Values are assigned with the syntax `key = value` (whitespace doesn't
- matter). The value can be any primitive: a string, number, boolean,
- object, or list.
-
- * Strings are double-quoted and can contain any UTF-8 characters.
- Example: `"Hello, World"`
-
- * Multi-line strings start with `<<EOF` at the end of a line, and end
- with `EOF` on its own line ([here documents](https://en.wikipedia.org/wiki/Here_document)).
- Any text may be used in place of `EOF`. Example:
-```
-<<FOO
-hello
-world
-FOO
-```
-
- * Numbers are assumed to be base 10. If you prefix a number with 0x,
- it is treated as a hexadecimal. If it is prefixed with 0, it is
- treated as an octal. Numbers can be in scientific notation: "1e10".
-
- * Boolean values: `true`, `false`
-
- * Arrays can be made by wrapping it in `[]`. Example:
- `["foo", "bar", 42]`. Arrays can contain primitives,
- other arrays, and objects. As an alternative, lists
- of objects can be created with repeated blocks, using
- this structure:
-
- ```hcl
- service {
- key = "value"
- }
-
- service {
- key = "value"
- }
- ```
-
-Objects and nested objects are created using the structure shown below:
-
-```
-variable "ami" {
- description = "the AMI to use"
-}
-```
-This would be equivalent to the following json:
-``` json
-{
- "variable": {
- "ami": {
- "description": "the AMI to use"
- }
- }
-}
-```
-
-## Thanks
-
-Thanks to:
-
- * [@vstakhov](https://github.com/vstakhov) - The original libucl parser
- and syntax that HCL was based off of.
-
- * [@fatih](https://github.com/fatih) - The rewritten HCL parser
- in pure Go (no goyacc) and support for a printer.
diff --git a/vendor/github.com/hashicorp/hcl/appveyor.yml b/vendor/github.com/hashicorp/hcl/appveyor.yml
deleted file mode 100644
index 4db0b71..0000000
--- a/vendor/github.com/hashicorp/hcl/appveyor.yml
+++ /dev/null
@@ -1,19 +0,0 @@
-version: "build-{branch}-{build}"
-image: Visual Studio 2015
-clone_folder: c:\gopath\src\github.com\hashicorp\hcl
-environment:
- GOPATH: c:\gopath
-init:
- - git config --global core.autocrlf false
-install:
-- cmd: >-
- echo %Path%
-
- go version
-
- go env
-
- go get -t ./...
-
-build_script:
-- cmd: go test -v ./...
diff --git a/vendor/github.com/hashicorp/hcl/decoder.go b/vendor/github.com/hashicorp/hcl/decoder.go
deleted file mode 100644
index bed9ebb..0000000
--- a/vendor/github.com/hashicorp/hcl/decoder.go
+++ /dev/null
@@ -1,729 +0,0 @@
-package hcl
-
-import (
- "errors"
- "fmt"
- "reflect"
- "sort"
- "strconv"
- "strings"
-
- "github.com/hashicorp/hcl/hcl/ast"
- "github.com/hashicorp/hcl/hcl/parser"
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-// This is the tag to use with structures to have settings for HCL
-const tagName = "hcl"
-
-var (
- // nodeType holds a reference to the type of ast.Node
- nodeType reflect.Type = findNodeType()
-)
-
-// Unmarshal accepts a byte slice as input and writes the
-// data to the value pointed to by v.
-func Unmarshal(bs []byte, v interface{}) error {
- root, err := parse(bs)
- if err != nil {
- return err
- }
-
- return DecodeObject(v, root)
-}
-
-// Decode reads the given input and decodes it into the structure
-// given by `out`.
-func Decode(out interface{}, in string) error {
- obj, err := Parse(in)
- if err != nil {
- return err
- }
-
- return DecodeObject(out, obj)
-}
-
-// DecodeObject is a lower-level version of Decode. It decodes a
-// raw Object into the given output.
-func DecodeObject(out interface{}, n ast.Node) error {
- val := reflect.ValueOf(out)
- if val.Kind() != reflect.Ptr {
- return errors.New("result must be a pointer")
- }
-
- // If we have the file, we really decode the root node
- if f, ok := n.(*ast.File); ok {
- n = f.Node
- }
-
- var d decoder
- return d.decode("root", n, val.Elem())
-}
-
-type decoder struct {
- stack []reflect.Kind
-}
-
-func (d *decoder) decode(name string, node ast.Node, result reflect.Value) error {
- k := result
-
- // If we have an interface with a valid value, we use that
- // for the check.
- if result.Kind() == reflect.Interface {
- elem := result.Elem()
- if elem.IsValid() {
- k = elem
- }
- }
-
- // Push current onto stack unless it is an interface.
- if k.Kind() != reflect.Interface {
- d.stack = append(d.stack, k.Kind())
-
- // Schedule a pop
- defer func() {
- d.stack = d.stack[:len(d.stack)-1]
- }()
- }
-
- switch k.Kind() {
- case reflect.Bool:
- return d.decodeBool(name, node, result)
- case reflect.Float32, reflect.Float64:
- return d.decodeFloat(name, node, result)
- case reflect.Int, reflect.Int32, reflect.Int64:
- return d.decodeInt(name, node, result)
- case reflect.Interface:
- // When we see an interface, we make our own thing
- return d.decodeInterface(name, node, result)
- case reflect.Map:
- return d.decodeMap(name, node, result)
- case reflect.Ptr:
- return d.decodePtr(name, node, result)
- case reflect.Slice:
- return d.decodeSlice(name, node, result)
- case reflect.String:
- return d.decodeString(name, node, result)
- case reflect.Struct:
- return d.decodeStruct(name, node, result)
- default:
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unknown kind to decode into: %s", name, k.Kind()),
- }
- }
-}
-
-func (d *decoder) decodeBool(name string, node ast.Node, result reflect.Value) error {
- switch n := node.(type) {
- case *ast.LiteralType:
- if n.Token.Type == token.BOOL {
- v, err := strconv.ParseBool(n.Token.Text)
- if err != nil {
- return err
- }
-
- result.Set(reflect.ValueOf(v))
- return nil
- }
- }
-
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unknown type %T", name, node),
- }
-}
-
-func (d *decoder) decodeFloat(name string, node ast.Node, result reflect.Value) error {
- switch n := node.(type) {
- case *ast.LiteralType:
- if n.Token.Type == token.FLOAT || n.Token.Type == token.NUMBER {
- v, err := strconv.ParseFloat(n.Token.Text, 64)
- if err != nil {
- return err
- }
-
- result.Set(reflect.ValueOf(v).Convert(result.Type()))
- return nil
- }
- }
-
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unknown type %T", name, node),
- }
-}
-
-func (d *decoder) decodeInt(name string, node ast.Node, result reflect.Value) error {
- switch n := node.(type) {
- case *ast.LiteralType:
- switch n.Token.Type {
- case token.NUMBER:
- v, err := strconv.ParseInt(n.Token.Text, 0, 0)
- if err != nil {
- return err
- }
-
- if result.Kind() == reflect.Interface {
- result.Set(reflect.ValueOf(int(v)))
- } else {
- result.SetInt(v)
- }
- return nil
- case token.STRING:
- v, err := strconv.ParseInt(n.Token.Value().(string), 0, 0)
- if err != nil {
- return err
- }
-
- if result.Kind() == reflect.Interface {
- result.Set(reflect.ValueOf(int(v)))
- } else {
- result.SetInt(v)
- }
- return nil
- }
- }
-
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unknown type %T", name, node),
- }
-}
-
-func (d *decoder) decodeInterface(name string, node ast.Node, result reflect.Value) error {
- // When we see an ast.Node, we retain the value to enable deferred decoding.
- // Very useful in situations where we want to preserve ast.Node information
- // like Pos
- if result.Type() == nodeType && result.CanSet() {
- result.Set(reflect.ValueOf(node))
- return nil
- }
-
- var set reflect.Value
- redecode := true
-
- // For testing types, ObjectType should just be treated as a list. We
- // set this to a temporary var because we want to pass in the real node.
- testNode := node
- if ot, ok := node.(*ast.ObjectType); ok {
- testNode = ot.List
- }
-
- switch n := testNode.(type) {
- case *ast.ObjectList:
- // If we're at the root or we're directly within a slice, then we
- // decode objects into map[string]interface{}, otherwise we decode
- // them into lists.
- if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
- var temp map[string]interface{}
- tempVal := reflect.ValueOf(temp)
- result := reflect.MakeMap(
- reflect.MapOf(
- reflect.TypeOf(""),
- tempVal.Type().Elem()))
-
- set = result
- } else {
- var temp []map[string]interface{}
- tempVal := reflect.ValueOf(temp)
- result := reflect.MakeSlice(
- reflect.SliceOf(tempVal.Type().Elem()), 0, len(n.Items))
- set = result
- }
- case *ast.ObjectType:
- // If we're at the root or we're directly within a slice, then we
- // decode objects into map[string]interface{}, otherwise we decode
- // them into lists.
- if len(d.stack) == 0 || d.stack[len(d.stack)-1] == reflect.Slice {
- var temp map[string]interface{}
- tempVal := reflect.ValueOf(temp)
- result := reflect.MakeMap(
- reflect.MapOf(
- reflect.TypeOf(""),
- tempVal.Type().Elem()))
-
- set = result
- } else {
- var temp []map[string]interface{}
- tempVal := reflect.ValueOf(temp)
- result := reflect.MakeSlice(
- reflect.SliceOf(tempVal.Type().Elem()), 0, 1)
- set = result
- }
- case *ast.ListType:
- var temp []interface{}
- tempVal := reflect.ValueOf(temp)
- result := reflect.MakeSlice(
- reflect.SliceOf(tempVal.Type().Elem()), 0, 0)
- set = result
- case *ast.LiteralType:
- switch n.Token.Type {
- case token.BOOL:
- var result bool
- set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
- case token.FLOAT:
- var result float64
- set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
- case token.NUMBER:
- var result int
- set = reflect.Indirect(reflect.New(reflect.TypeOf(result)))
- case token.STRING, token.HEREDOC:
- set = reflect.Indirect(reflect.New(reflect.TypeOf("")))
- default:
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: cannot decode into interface: %T", name, node),
- }
- }
- default:
- return fmt.Errorf(
- "%s: cannot decode into interface: %T",
- name, node)
- }
-
- // Set the result to what its supposed to be, then reset
- // result so we don't reflect into this method anymore.
- result.Set(set)
-
- if redecode {
- // Revisit the node so that we can use the newly instantiated
- // thing and populate it.
- if err := d.decode(name, node, result); err != nil {
- return err
- }
- }
-
- return nil
-}
-
-func (d *decoder) decodeMap(name string, node ast.Node, result reflect.Value) error {
- if item, ok := node.(*ast.ObjectItem); ok {
- node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
- }
-
- if ot, ok := node.(*ast.ObjectType); ok {
- node = ot.List
- }
-
- n, ok := node.(*ast.ObjectList)
- if !ok {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: not an object type for map (%T)", name, node),
- }
- }
-
- // If we have an interface, then we can address the interface,
- // but not the slice itself, so get the element but set the interface
- set := result
- if result.Kind() == reflect.Interface {
- result = result.Elem()
- }
-
- resultType := result.Type()
- resultElemType := resultType.Elem()
- resultKeyType := resultType.Key()
- if resultKeyType.Kind() != reflect.String {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: map must have string keys", name),
- }
- }
-
- // Make a map if it is nil
- resultMap := result
- if result.IsNil() {
- resultMap = reflect.MakeMap(
- reflect.MapOf(resultKeyType, resultElemType))
- }
-
- // Go through each element and decode it.
- done := make(map[string]struct{})
- for _, item := range n.Items {
- if item.Val == nil {
- continue
- }
-
- // github.com/hashicorp/terraform/issue/5740
- if len(item.Keys) == 0 {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: map must have string keys", name),
- }
- }
-
- // Get the key we're dealing with, which is the first item
- keyStr := item.Keys[0].Token.Value().(string)
-
- // If we've already processed this key, then ignore it
- if _, ok := done[keyStr]; ok {
- continue
- }
-
- // Determine the value. If we have more than one key, then we
- // get the objectlist of only these keys.
- itemVal := item.Val
- if len(item.Keys) > 1 {
- itemVal = n.Filter(keyStr)
- done[keyStr] = struct{}{}
- }
-
- // Make the field name
- fieldName := fmt.Sprintf("%s.%s", name, keyStr)
-
- // Get the key/value as reflection values
- key := reflect.ValueOf(keyStr)
- val := reflect.Indirect(reflect.New(resultElemType))
-
- // If we have a pre-existing value in the map, use that
- oldVal := resultMap.MapIndex(key)
- if oldVal.IsValid() {
- val.Set(oldVal)
- }
-
- // Decode!
- if err := d.decode(fieldName, itemVal, val); err != nil {
- return err
- }
-
- // Set the value on the map
- resultMap.SetMapIndex(key, val)
- }
-
- // Set the final map if we can
- set.Set(resultMap)
- return nil
-}
-
-func (d *decoder) decodePtr(name string, node ast.Node, result reflect.Value) error {
- // Create an element of the concrete (non pointer) type and decode
- // into that. Then set the value of the pointer to this type.
- resultType := result.Type()
- resultElemType := resultType.Elem()
- val := reflect.New(resultElemType)
- if err := d.decode(name, node, reflect.Indirect(val)); err != nil {
- return err
- }
-
- result.Set(val)
- return nil
-}
-
-func (d *decoder) decodeSlice(name string, node ast.Node, result reflect.Value) error {
- // If we have an interface, then we can address the interface,
- // but not the slice itself, so get the element but set the interface
- set := result
- if result.Kind() == reflect.Interface {
- result = result.Elem()
- }
- // Create the slice if it isn't nil
- resultType := result.Type()
- resultElemType := resultType.Elem()
- if result.IsNil() {
- resultSliceType := reflect.SliceOf(resultElemType)
- result = reflect.MakeSlice(
- resultSliceType, 0, 0)
- }
-
- // Figure out the items we'll be copying into the slice
- var items []ast.Node
- switch n := node.(type) {
- case *ast.ObjectList:
- items = make([]ast.Node, len(n.Items))
- for i, item := range n.Items {
- items[i] = item
- }
- case *ast.ObjectType:
- items = []ast.Node{n}
- case *ast.ListType:
- items = n.List
- default:
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("unknown slice type: %T", node),
- }
- }
-
- for i, item := range items {
- fieldName := fmt.Sprintf("%s[%d]", name, i)
-
- // Decode
- val := reflect.Indirect(reflect.New(resultElemType))
-
- // if item is an object that was decoded from ambiguous JSON and
- // flattened, make sure it's expanded if it needs to decode into a
- // defined structure.
- item := expandObject(item, val)
-
- if err := d.decode(fieldName, item, val); err != nil {
- return err
- }
-
- // Append it onto the slice
- result = reflect.Append(result, val)
- }
-
- set.Set(result)
- return nil
-}
-
-// expandObject detects if an ambiguous JSON object was flattened to a List which
-// should be decoded into a struct, and expands the ast to properly deocode.
-func expandObject(node ast.Node, result reflect.Value) ast.Node {
- item, ok := node.(*ast.ObjectItem)
- if !ok {
- return node
- }
-
- elemType := result.Type()
-
- // our target type must be a struct
- switch elemType.Kind() {
- case reflect.Ptr:
- switch elemType.Elem().Kind() {
- case reflect.Struct:
- //OK
- default:
- return node
- }
- case reflect.Struct:
- //OK
- default:
- return node
- }
-
- // A list value will have a key and field name. If it had more fields,
- // it wouldn't have been flattened.
- if len(item.Keys) != 2 {
- return node
- }
-
- keyToken := item.Keys[0].Token
- item.Keys = item.Keys[1:]
-
- // we need to un-flatten the ast enough to decode
- newNode := &ast.ObjectItem{
- Keys: []*ast.ObjectKey{
- &ast.ObjectKey{
- Token: keyToken,
- },
- },
- Val: &ast.ObjectType{
- List: &ast.ObjectList{
- Items: []*ast.ObjectItem{item},
- },
- },
- }
-
- return newNode
-}
-
-func (d *decoder) decodeString(name string, node ast.Node, result reflect.Value) error {
- switch n := node.(type) {
- case *ast.LiteralType:
- switch n.Token.Type {
- case token.NUMBER:
- result.Set(reflect.ValueOf(n.Token.Text).Convert(result.Type()))
- return nil
- case token.STRING, token.HEREDOC:
- result.Set(reflect.ValueOf(n.Token.Value()).Convert(result.Type()))
- return nil
- }
- }
-
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unknown type for string %T", name, node),
- }
-}
-
-func (d *decoder) decodeStruct(name string, node ast.Node, result reflect.Value) error {
- var item *ast.ObjectItem
- if it, ok := node.(*ast.ObjectItem); ok {
- item = it
- node = it.Val
- }
-
- if ot, ok := node.(*ast.ObjectType); ok {
- node = ot.List
- }
-
- // Handle the special case where the object itself is a literal. Previously
- // the yacc parser would always ensure top-level elements were arrays. The new
- // parser does not make the same guarantees, thus we need to convert any
- // top-level literal elements into a list.
- if _, ok := node.(*ast.LiteralType); ok && item != nil {
- node = &ast.ObjectList{Items: []*ast.ObjectItem{item}}
- }
-
- list, ok := node.(*ast.ObjectList)
- if !ok {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: not an object type for struct (%T)", name, node),
- }
- }
-
- // This slice will keep track of all the structs we'll be decoding.
- // There can be more than one struct if there are embedded structs
- // that are squashed.
- structs := make([]reflect.Value, 1, 5)
- structs[0] = result
-
- // Compile the list of all the fields that we're going to be decoding
- // from all the structs.
- type field struct {
- field reflect.StructField
- val reflect.Value
- }
- fields := []field{}
- for len(structs) > 0 {
- structVal := structs[0]
- structs = structs[1:]
-
- structType := structVal.Type()
- for i := 0; i < structType.NumField(); i++ {
- fieldType := structType.Field(i)
- tagParts := strings.Split(fieldType.Tag.Get(tagName), ",")
-
- // Ignore fields with tag name "-"
- if tagParts[0] == "-" {
- continue
- }
-
- if fieldType.Anonymous {
- fieldKind := fieldType.Type.Kind()
- if fieldKind != reflect.Struct {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: unsupported type to struct: %s",
- fieldType.Name, fieldKind),
- }
- }
-
- // We have an embedded field. We "squash" the fields down
- // if specified in the tag.
- squash := false
- for _, tag := range tagParts[1:] {
- if tag == "squash" {
- squash = true
- break
- }
- }
-
- if squash {
- structs = append(
- structs, result.FieldByName(fieldType.Name))
- continue
- }
- }
-
- // Normal struct field, store it away
- fields = append(fields, field{fieldType, structVal.Field(i)})
- }
- }
-
- usedKeys := make(map[string]struct{})
- decodedFields := make([]string, 0, len(fields))
- decodedFieldsVal := make([]reflect.Value, 0)
- unusedKeysVal := make([]reflect.Value, 0)
- for _, f := range fields {
- field, fieldValue := f.field, f.val
- if !fieldValue.IsValid() {
- // This should never happen
- panic("field is not valid")
- }
-
- // If we can't set the field, then it is unexported or something,
- // and we just continue onwards.
- if !fieldValue.CanSet() {
- continue
- }
-
- fieldName := field.Name
-
- tagValue := field.Tag.Get(tagName)
- tagParts := strings.SplitN(tagValue, ",", 2)
- if len(tagParts) >= 2 {
- switch tagParts[1] {
- case "decodedFields":
- decodedFieldsVal = append(decodedFieldsVal, fieldValue)
- continue
- case "key":
- if item == nil {
- return &parser.PosError{
- Pos: node.Pos(),
- Err: fmt.Errorf("%s: %s asked for 'key', impossible",
- name, fieldName),
- }
- }
-
- fieldValue.SetString(item.Keys[0].Token.Value().(string))
- continue
- case "unusedKeys":
- unusedKeysVal = append(unusedKeysVal, fieldValue)
- continue
- }
- }
-
- if tagParts[0] != "" {
- fieldName = tagParts[0]
- }
-
- // Determine the element we'll use to decode. If it is a single
- // match (only object with the field), then we decode it exactly.
- // If it is a prefix match, then we decode the matches.
- filter := list.Filter(fieldName)
-
- prefixMatches := filter.Children()
- matches := filter.Elem()
- if len(matches.Items) == 0 && len(prefixMatches.Items) == 0 {
- continue
- }
-
- // Track the used key
- usedKeys[fieldName] = struct{}{}
-
- // Create the field name and decode. We range over the elements
- // because we actually want the value.
- fieldName = fmt.Sprintf("%s.%s", name, fieldName)
- if len(prefixMatches.Items) > 0 {
- if err := d.decode(fieldName, prefixMatches, fieldValue); err != nil {
- return err
- }
- }
- for _, match := range matches.Items {
- var decodeNode ast.Node = match.Val
- if ot, ok := decodeNode.(*ast.ObjectType); ok {
- decodeNode = &ast.ObjectList{Items: ot.List.Items}
- }
-
- if err := d.decode(fieldName, decodeNode, fieldValue); err != nil {
- return err
- }
- }
-
- decodedFields = append(decodedFields, field.Name)
- }
-
- if len(decodedFieldsVal) > 0 {
- // Sort it so that it is deterministic
- sort.Strings(decodedFields)
-
- for _, v := range decodedFieldsVal {
- v.Set(reflect.ValueOf(decodedFields))
- }
- }
-
- return nil
-}
-
-// findNodeType returns the type of ast.Node
-func findNodeType() reflect.Type {
- var nodeContainer struct {
- Node ast.Node
- }
- value := reflect.ValueOf(nodeContainer).FieldByName("Node")
- return value.Type()
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl.go b/vendor/github.com/hashicorp/hcl/hcl.go
deleted file mode 100644
index 575a20b..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl.go
+++ /dev/null
@@ -1,11 +0,0 @@
-// Package hcl decodes HCL into usable Go structures.
-//
-// hcl input can come in either pure HCL format or JSON format.
-// It can be parsed into an AST, and then decoded into a structure,
-// or it can be decoded directly from a string into a structure.
-//
-// If you choose to parse HCL into a raw AST, the benefit is that you
-// can write custom visitor implementations to implement custom
-// semantic checks. By default, HCL does not perform any semantic
-// checks.
-package hcl
diff --git a/vendor/github.com/hashicorp/hcl/hcl/ast/ast.go b/vendor/github.com/hashicorp/hcl/hcl/ast/ast.go
deleted file mode 100644
index 6e5ef65..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/ast/ast.go
+++ /dev/null
@@ -1,219 +0,0 @@
-// Package ast declares the types used to represent syntax trees for HCL
-// (HashiCorp Configuration Language)
-package ast
-
-import (
- "fmt"
- "strings"
-
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-// Node is an element in the abstract syntax tree.
-type Node interface {
- node()
- Pos() token.Pos
-}
-
-func (File) node() {}
-func (ObjectList) node() {}
-func (ObjectKey) node() {}
-func (ObjectItem) node() {}
-func (Comment) node() {}
-func (CommentGroup) node() {}
-func (ObjectType) node() {}
-func (LiteralType) node() {}
-func (ListType) node() {}
-
-// File represents a single HCL file
-type File struct {
- Node Node // usually a *ObjectList
- Comments []*CommentGroup // list of all comments in the source
-}
-
-func (f *File) Pos() token.Pos {
- return f.Node.Pos()
-}
-
-// ObjectList represents a list of ObjectItems. An HCL file itself is an
-// ObjectList.
-type ObjectList struct {
- Items []*ObjectItem
-}
-
-func (o *ObjectList) Add(item *ObjectItem) {
- o.Items = append(o.Items, item)
-}
-
-// Filter filters out the objects with the given key list as a prefix.
-//
-// The returned list of objects contain ObjectItems where the keys have
-// this prefix already stripped off. This might result in objects with
-// zero-length key lists if they have no children.
-//
-// If no matches are found, an empty ObjectList (non-nil) is returned.
-func (o *ObjectList) Filter(keys ...string) *ObjectList {
- var result ObjectList
- for _, item := range o.Items {
- // If there aren't enough keys, then ignore this
- if len(item.Keys) < len(keys) {
- continue
- }
-
- match := true
- for i, key := range item.Keys[:len(keys)] {
- key := key.Token.Value().(string)
- if key != keys[i] && !strings.EqualFold(key, keys[i]) {
- match = false
- break
- }
- }
- if !match {
- continue
- }
-
- // Strip off the prefix from the children
- newItem := *item
- newItem.Keys = newItem.Keys[len(keys):]
- result.Add(&newItem)
- }
-
- return &result
-}
-
-// Children returns further nested objects (key length > 0) within this
-// ObjectList. This should be used with Filter to get at child items.
-func (o *ObjectList) Children() *ObjectList {
- var result ObjectList
- for _, item := range o.Items {
- if len(item.Keys) > 0 {
- result.Add(item)
- }
- }
-
- return &result
-}
-
-// Elem returns items in the list that are direct element assignments
-// (key length == 0). This should be used with Filter to get at elements.
-func (o *ObjectList) Elem() *ObjectList {
- var result ObjectList
- for _, item := range o.Items {
- if len(item.Keys) == 0 {
- result.Add(item)
- }
- }
-
- return &result
-}
-
-func (o *ObjectList) Pos() token.Pos {
- // always returns the uninitiliazed position
- return o.Items[0].Pos()
-}
-
-// ObjectItem represents a HCL Object Item. An item is represented with a key
-// (or keys). It can be an assignment or an object (both normal and nested)
-type ObjectItem struct {
- // keys is only one length long if it's of type assignment. If it's a
- // nested object it can be larger than one. In that case "assign" is
- // invalid as there is no assignments for a nested object.
- Keys []*ObjectKey
-
- // assign contains the position of "=", if any
- Assign token.Pos
-
- // val is the item itself. It can be an object,list, number, bool or a
- // string. If key length is larger than one, val can be only of type
- // Object.
- Val Node
-
- LeadComment *CommentGroup // associated lead comment
- LineComment *CommentGroup // associated line comment
-}
-
-func (o *ObjectItem) Pos() token.Pos {
- // I'm not entirely sure what causes this, but removing this causes
- // a test failure. We should investigate at some point.
- if len(o.Keys) == 0 {
- return token.Pos{}
- }
-
- return o.Keys[0].Pos()
-}
-
-// ObjectKeys are either an identifier or of type string.
-type ObjectKey struct {
- Token token.Token
-}
-
-func (o *ObjectKey) Pos() token.Pos {
- return o.Token.Pos
-}
-
-// LiteralType represents a literal of basic type. Valid types are:
-// token.NUMBER, token.FLOAT, token.BOOL and token.STRING
-type LiteralType struct {
- Token token.Token
-
- // comment types, only used when in a list
- LeadComment *CommentGroup
- LineComment *CommentGroup
-}
-
-func (l *LiteralType) Pos() token.Pos {
- return l.Token.Pos
-}
-
-// ListStatement represents a HCL List type
-type ListType struct {
- Lbrack token.Pos // position of "["
- Rbrack token.Pos // position of "]"
- List []Node // the elements in lexical order
-}
-
-func (l *ListType) Pos() token.Pos {
- return l.Lbrack
-}
-
-func (l *ListType) Add(node Node) {
- l.List = append(l.List, node)
-}
-
-// ObjectType represents a HCL Object Type
-type ObjectType struct {
- Lbrace token.Pos // position of "{"
- Rbrace token.Pos // position of "}"
- List *ObjectList // the nodes in lexical order
-}
-
-func (o *ObjectType) Pos() token.Pos {
- return o.Lbrace
-}
-
-// Comment node represents a single //, # style or /*- style commment
-type Comment struct {
- Start token.Pos // position of / or #
- Text string
-}
-
-func (c *Comment) Pos() token.Pos {
- return c.Start
-}
-
-// CommentGroup node represents a sequence of comments with no other tokens and
-// no empty lines between.
-type CommentGroup struct {
- List []*Comment // len(List) > 0
-}
-
-func (c *CommentGroup) Pos() token.Pos {
- return c.List[0].Pos()
-}
-
-//-------------------------------------------------------------------
-// GoStringer
-//-------------------------------------------------------------------
-
-func (o *ObjectKey) GoString() string { return fmt.Sprintf("*%#v", *o) }
-func (o *ObjectList) GoString() string { return fmt.Sprintf("*%#v", *o) }
diff --git a/vendor/github.com/hashicorp/hcl/hcl/ast/walk.go b/vendor/github.com/hashicorp/hcl/hcl/ast/walk.go
deleted file mode 100644
index ba07ad4..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/ast/walk.go
+++ /dev/null
@@ -1,52 +0,0 @@
-package ast
-
-import "fmt"
-
-// WalkFunc describes a function to be called for each node during a Walk. The
-// returned node can be used to rewrite the AST. Walking stops the returned
-// bool is false.
-type WalkFunc func(Node) (Node, bool)
-
-// Walk traverses an AST in depth-first order: It starts by calling fn(node);
-// node must not be nil. If fn returns true, Walk invokes fn recursively for
-// each of the non-nil children of node, followed by a call of fn(nil). The
-// returned node of fn can be used to rewrite the passed node to fn.
-func Walk(node Node, fn WalkFunc) Node {
- rewritten, ok := fn(node)
- if !ok {
- return rewritten
- }
-
- switch n := node.(type) {
- case *File:
- n.Node = Walk(n.Node, fn)
- case *ObjectList:
- for i, item := range n.Items {
- n.Items[i] = Walk(item, fn).(*ObjectItem)
- }
- case *ObjectKey:
- // nothing to do
- case *ObjectItem:
- for i, k := range n.Keys {
- n.Keys[i] = Walk(k, fn).(*ObjectKey)
- }
-
- if n.Val != nil {
- n.Val = Walk(n.Val, fn)
- }
- case *LiteralType:
- // nothing to do
- case *ListType:
- for i, l := range n.List {
- n.List[i] = Walk(l, fn)
- }
- case *ObjectType:
- n.List = Walk(n.List, fn).(*ObjectList)
- default:
- // should we panic here?
- fmt.Printf("unknown type: %T\n", n)
- }
-
- fn(nil)
- return rewritten
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/parser/error.go b/vendor/github.com/hashicorp/hcl/hcl/parser/error.go
deleted file mode 100644
index 5c99381..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/parser/error.go
+++ /dev/null
@@ -1,17 +0,0 @@
-package parser
-
-import (
- "fmt"
-
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-// PosError is a parse error that contains a position.
-type PosError struct {
- Pos token.Pos
- Err error
-}
-
-func (e *PosError) Error() string {
- return fmt.Sprintf("At %s: %s", e.Pos, e.Err)
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/parser/parser.go b/vendor/github.com/hashicorp/hcl/hcl/parser/parser.go
deleted file mode 100644
index 64c83bc..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/parser/parser.go
+++ /dev/null
@@ -1,532 +0,0 @@
-// Package parser implements a parser for HCL (HashiCorp Configuration
-// Language)
-package parser
-
-import (
- "bytes"
- "errors"
- "fmt"
- "strings"
-
- "github.com/hashicorp/hcl/hcl/ast"
- "github.com/hashicorp/hcl/hcl/scanner"
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-type Parser struct {
- sc *scanner.Scanner
-
- // Last read token
- tok token.Token
- commaPrev token.Token
-
- comments []*ast.CommentGroup
- leadComment *ast.CommentGroup // last lead comment
- lineComment *ast.CommentGroup // last line comment
-
- enableTrace bool
- indent int
- n int // buffer size (max = 1)
-}
-
-func newParser(src []byte) *Parser {
- return &Parser{
- sc: scanner.New(src),
- }
-}
-
-// Parse returns the fully parsed source and returns the abstract syntax tree.
-func Parse(src []byte) (*ast.File, error) {
- // normalize all line endings
- // since the scanner and output only work with "\n" line endings, we may
- // end up with dangling "\r" characters in the parsed data.
- src = bytes.Replace(src, []byte("\r\n"), []byte("\n"), -1)
-
- p := newParser(src)
- return p.Parse()
-}
-
-var errEofToken = errors.New("EOF token found")
-
-// Parse returns the fully parsed source and returns the abstract syntax tree.
-func (p *Parser) Parse() (*ast.File, error) {
- f := &ast.File{}
- var err, scerr error
- p.sc.Error = func(pos token.Pos, msg string) {
- scerr = &PosError{Pos: pos, Err: errors.New(msg)}
- }
-
- f.Node, err = p.objectList(false)
- if scerr != nil {
- return nil, scerr
- }
- if err != nil {
- return nil, err
- }
-
- f.Comments = p.comments
- return f, nil
-}
-
-// objectList parses a list of items within an object (generally k/v pairs).
-// The parameter" obj" tells this whether to we are within an object (braces:
-// '{', '}') or just at the top level. If we're within an object, we end
-// at an RBRACE.
-func (p *Parser) objectList(obj bool) (*ast.ObjectList, error) {
- defer un(trace(p, "ParseObjectList"))
- node := &ast.ObjectList{}
-
- for {
- if obj {
- tok := p.scan()
- p.unscan()
- if tok.Type == token.RBRACE {
- break
- }
- }
-
- n, err := p.objectItem()
- if err == errEofToken {
- break // we are finished
- }
-
- // we don't return a nil node, because might want to use already
- // collected items.
- if err != nil {
- return node, err
- }
-
- node.Add(n)
-
- // object lists can be optionally comma-delimited e.g. when a list of maps
- // is being expressed, so a comma is allowed here - it's simply consumed
- tok := p.scan()
- if tok.Type != token.COMMA {
- p.unscan()
- }
- }
- return node, nil
-}
-
-func (p *Parser) consumeComment() (comment *ast.Comment, endline int) {
- endline = p.tok.Pos.Line
-
- // count the endline if it's multiline comment, ie starting with /*
- if len(p.tok.Text) > 1 && p.tok.Text[1] == '*' {
- // don't use range here - no need to decode Unicode code points
- for i := 0; i < len(p.tok.Text); i++ {
- if p.tok.Text[i] == '\n' {
- endline++
- }
- }
- }
-
- comment = &ast.Comment{Start: p.tok.Pos, Text: p.tok.Text}
- p.tok = p.sc.Scan()
- return
-}
-
-func (p *Parser) consumeCommentGroup(n int) (comments *ast.CommentGroup, endline int) {
- var list []*ast.Comment
- endline = p.tok.Pos.Line
-
- for p.tok.Type == token.COMMENT && p.tok.Pos.Line <= endline+n {
- var comment *ast.Comment
- comment, endline = p.consumeComment()
- list = append(list, comment)
- }
-
- // add comment group to the comments list
- comments = &ast.CommentGroup{List: list}
- p.comments = append(p.comments, comments)
-
- return
-}
-
-// objectItem parses a single object item
-func (p *Parser) objectItem() (*ast.ObjectItem, error) {
- defer un(trace(p, "ParseObjectItem"))
-
- keys, err := p.objectKey()
- if len(keys) > 0 && err == errEofToken {
- // We ignore eof token here since it is an error if we didn't
- // receive a value (but we did receive a key) for the item.
- err = nil
- }
- if len(keys) > 0 && err != nil && p.tok.Type == token.RBRACE {
- // This is a strange boolean statement, but what it means is:
- // We have keys with no value, and we're likely in an object
- // (since RBrace ends an object). For this, we set err to nil so
- // we continue and get the error below of having the wrong value
- // type.
- err = nil
-
- // Reset the token type so we don't think it completed fine. See
- // objectType which uses p.tok.Type to check if we're done with
- // the object.
- p.tok.Type = token.EOF
- }
- if err != nil {
- return nil, err
- }
-
- o := &ast.ObjectItem{
- Keys: keys,
- }
-
- if p.leadComment != nil {
- o.LeadComment = p.leadComment
- p.leadComment = nil
- }
-
- switch p.tok.Type {
- case token.ASSIGN:
- o.Assign = p.tok.Pos
- o.Val, err = p.object()
- if err != nil {
- return nil, err
- }
- case token.LBRACE:
- o.Val, err = p.objectType()
- if err != nil {
- return nil, err
- }
- default:
- keyStr := make([]string, 0, len(keys))
- for _, k := range keys {
- keyStr = append(keyStr, k.Token.Text)
- }
-
- return nil, &PosError{
- Pos: p.tok.Pos,
- Err: fmt.Errorf(
- "key '%s' expected start of object ('{') or assignment ('=')",
- strings.Join(keyStr, " ")),
- }
- }
-
- // key=#comment
- // val
- if p.lineComment != nil {
- o.LineComment, p.lineComment = p.lineComment, nil
- }
-
- // do a look-ahead for line comment
- p.scan()
- if len(keys) > 0 && o.Val.Pos().Line == keys[0].Pos().Line && p.lineComment != nil {
- o.LineComment = p.lineComment
- p.lineComment = nil
- }
- p.unscan()
- return o, nil
-}
-
-// objectKey parses an object key and returns a ObjectKey AST
-func (p *Parser) objectKey() ([]*ast.ObjectKey, error) {
- keyCount := 0
- keys := make([]*ast.ObjectKey, 0)
-
- for {
- tok := p.scan()
- switch tok.Type {
- case token.EOF:
- // It is very important to also return the keys here as well as
- // the error. This is because we need to be able to tell if we
- // did parse keys prior to finding the EOF, or if we just found
- // a bare EOF.
- return keys, errEofToken
- case token.ASSIGN:
- // assignment or object only, but not nested objects. this is not
- // allowed: `foo bar = {}`
- if keyCount > 1 {
- return nil, &PosError{
- Pos: p.tok.Pos,
- Err: fmt.Errorf("nested object expected: LBRACE got: %s", p.tok.Type),
- }
- }
-
- if keyCount == 0 {
- return nil, &PosError{
- Pos: p.tok.Pos,
- Err: errors.New("no object keys found!"),
- }
- }
-
- return keys, nil
- case token.LBRACE:
- var err error
-
- // If we have no keys, then it is a syntax error. i.e. {{}} is not
- // allowed.
- if len(keys) == 0 {
- err = &PosError{
- Pos: p.tok.Pos,
- Err: fmt.Errorf("expected: IDENT | STRING got: %s", p.tok.Type),
- }
- }
-
- // object
- return keys, err
- case token.IDENT, token.STRING:
- keyCount++
- keys = append(keys, &ast.ObjectKey{Token: p.tok})
- case token.ILLEGAL:
- return keys, &PosError{
- Pos: p.tok.Pos,
- Err: fmt.Errorf("illegal character"),
- }
- default:
- return keys, &PosError{
- Pos: p.tok.Pos,
- Err: fmt.Errorf("expected: IDENT | STRING | ASSIGN | LBRACE got: %s", p.tok.Type),
- }
- }
- }
-}
-
-// object parses any type of object, such as number, bool, string, object or
-// list.
-func (p *Parser) object() (ast.Node, error) {
- defer un(trace(p, "ParseType"))
- tok := p.scan()
-
- switch tok.Type {
- case token.NUMBER, token.FLOAT, token.BOOL, token.STRING, token.HEREDOC:
- return p.literalType()
- case token.LBRACE:
- return p.objectType()
- case token.LBRACK:
- return p.listType()
- case token.COMMENT:
- // implement comment
- case token.EOF:
- return nil, errEofToken
- }
-
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf("Unknown token: %+v", tok),
- }
-}
-
-// objectType parses an object type and returns a ObjectType AST
-func (p *Parser) objectType() (*ast.ObjectType, error) {
- defer un(trace(p, "ParseObjectType"))
-
- // we assume that the currently scanned token is a LBRACE
- o := &ast.ObjectType{
- Lbrace: p.tok.Pos,
- }
-
- l, err := p.objectList(true)
-
- // if we hit RBRACE, we are good to go (means we parsed all Items), if it's
- // not a RBRACE, it's an syntax error and we just return it.
- if err != nil && p.tok.Type != token.RBRACE {
- return nil, err
- }
-
- // No error, scan and expect the ending to be a brace
- if tok := p.scan(); tok.Type != token.RBRACE {
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf("object expected closing RBRACE got: %s", tok.Type),
- }
- }
-
- o.List = l
- o.Rbrace = p.tok.Pos // advanced via parseObjectList
- return o, nil
-}
-
-// listType parses a list type and returns a ListType AST
-func (p *Parser) listType() (*ast.ListType, error) {
- defer un(trace(p, "ParseListType"))
-
- // we assume that the currently scanned token is a LBRACK
- l := &ast.ListType{
- Lbrack: p.tok.Pos,
- }
-
- needComma := false
- for {
- tok := p.scan()
- if needComma {
- switch tok.Type {
- case token.COMMA, token.RBRACK:
- default:
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf(
- "error parsing list, expected comma or list end, got: %s",
- tok.Type),
- }
- }
- }
- switch tok.Type {
- case token.BOOL, token.NUMBER, token.FLOAT, token.STRING, token.HEREDOC:
- node, err := p.literalType()
- if err != nil {
- return nil, err
- }
-
- // If there is a lead comment, apply it
- if p.leadComment != nil {
- node.LeadComment = p.leadComment
- p.leadComment = nil
- }
-
- l.Add(node)
- needComma = true
- case token.COMMA:
- // get next list item or we are at the end
- // do a look-ahead for line comment
- p.scan()
- if p.lineComment != nil && len(l.List) > 0 {
- lit, ok := l.List[len(l.List)-1].(*ast.LiteralType)
- if ok {
- lit.LineComment = p.lineComment
- l.List[len(l.List)-1] = lit
- p.lineComment = nil
- }
- }
- p.unscan()
-
- needComma = false
- continue
- case token.LBRACE:
- // Looks like a nested object, so parse it out
- node, err := p.objectType()
- if err != nil {
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf(
- "error while trying to parse object within list: %s", err),
- }
- }
- l.Add(node)
- needComma = true
- case token.LBRACK:
- node, err := p.listType()
- if err != nil {
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf(
- "error while trying to parse list within list: %s", err),
- }
- }
- l.Add(node)
- case token.RBRACK:
- // finished
- l.Rbrack = p.tok.Pos
- return l, nil
- default:
- return nil, &PosError{
- Pos: tok.Pos,
- Err: fmt.Errorf("unexpected token while parsing list: %s", tok.Type),
- }
- }
- }
-}
-
-// literalType parses a literal type and returns a LiteralType AST
-func (p *Parser) literalType() (*ast.LiteralType, error) {
- defer un(trace(p, "ParseLiteral"))
-
- return &ast.LiteralType{
- Token: p.tok,
- }, nil
-}
-
-// scan returns the next token from the underlying scanner. If a token has
-// been unscanned then read that instead. In the process, it collects any
-// comment groups encountered, and remembers the last lead and line comments.
-func (p *Parser) scan() token.Token {
- // If we have a token on the buffer, then return it.
- if p.n != 0 {
- p.n = 0
- return p.tok
- }
-
- // Otherwise read the next token from the scanner and Save it to the buffer
- // in case we unscan later.
- prev := p.tok
- p.tok = p.sc.Scan()
-
- if p.tok.Type == token.COMMENT {
- var comment *ast.CommentGroup
- var endline int
-
- // fmt.Printf("p.tok.Pos.Line = %+v prev: %d endline %d \n",
- // p.tok.Pos.Line, prev.Pos.Line, endline)
- if p.tok.Pos.Line == prev.Pos.Line {
- // The comment is on same line as the previous token; it
- // cannot be a lead comment but may be a line comment.
- comment, endline = p.consumeCommentGroup(0)
- if p.tok.Pos.Line != endline {
- // The next token is on a different line, thus
- // the last comment group is a line comment.
- p.lineComment = comment
- }
- }
-
- // consume successor comments, if any
- endline = -1
- for p.tok.Type == token.COMMENT {
- comment, endline = p.consumeCommentGroup(1)
- }
-
- if endline+1 == p.tok.Pos.Line && p.tok.Type != token.RBRACE {
- switch p.tok.Type {
- case token.RBRACE, token.RBRACK:
- // Do not count for these cases
- default:
- // The next token is following on the line immediately after the
- // comment group, thus the last comment group is a lead comment.
- p.leadComment = comment
- }
- }
-
- }
-
- return p.tok
-}
-
-// unscan pushes the previously read token back onto the buffer.
-func (p *Parser) unscan() {
- p.n = 1
-}
-
-// ----------------------------------------------------------------------------
-// Parsing support
-
-func (p *Parser) printTrace(a ...interface{}) {
- if !p.enableTrace {
- return
- }
-
- const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
- const n = len(dots)
- fmt.Printf("%5d:%3d: ", p.tok.Pos.Line, p.tok.Pos.Column)
-
- i := 2 * p.indent
- for i > n {
- fmt.Print(dots)
- i -= n
- }
- // i <= n
- fmt.Print(dots[0:i])
- fmt.Println(a...)
-}
-
-func trace(p *Parser, msg string) *Parser {
- p.printTrace(msg, "(")
- p.indent++
- return p
-}
-
-// Usage pattern: defer un(trace(p, "..."))
-func un(p *Parser) {
- p.indent--
- p.printTrace(")")
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go b/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go
deleted file mode 100644
index 7c038d1..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/printer/nodes.go
+++ /dev/null
@@ -1,789 +0,0 @@
-package printer
-
-import (
- "bytes"
- "fmt"
- "sort"
-
- "github.com/hashicorp/hcl/hcl/ast"
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-const (
- blank = byte(' ')
- newline = byte('\n')
- tab = byte('\t')
- infinity = 1 << 30 // offset or line
-)
-
-var (
- unindent = []byte("\uE123") // in the private use space
-)
-
-type printer struct {
- cfg Config
- prev token.Pos
-
- comments []*ast.CommentGroup // may be nil, contains all comments
- standaloneComments []*ast.CommentGroup // contains all standalone comments (not assigned to any node)
-
- enableTrace bool
- indentTrace int
-}
-
-type ByPosition []*ast.CommentGroup
-
-func (b ByPosition) Len() int { return len(b) }
-func (b ByPosition) Swap(i, j int) { b[i], b[j] = b[j], b[i] }
-func (b ByPosition) Less(i, j int) bool { return b[i].Pos().Before(b[j].Pos()) }
-
-// collectComments comments all standalone comments which are not lead or line
-// comment
-func (p *printer) collectComments(node ast.Node) {
- // first collect all comments. This is already stored in
- // ast.File.(comments)
- ast.Walk(node, func(nn ast.Node) (ast.Node, bool) {
- switch t := nn.(type) {
- case *ast.File:
- p.comments = t.Comments
- return nn, false
- }
- return nn, true
- })
-
- standaloneComments := make(map[token.Pos]*ast.CommentGroup, 0)
- for _, c := range p.comments {
- standaloneComments[c.Pos()] = c
- }
-
- // next remove all lead and line comments from the overall comment map.
- // This will give us comments which are standalone, comments which are not
- // assigned to any kind of node.
- ast.Walk(node, func(nn ast.Node) (ast.Node, bool) {
- switch t := nn.(type) {
- case *ast.LiteralType:
- if t.LeadComment != nil {
- for _, comment := range t.LeadComment.List {
- if _, ok := standaloneComments[comment.Pos()]; ok {
- delete(standaloneComments, comment.Pos())
- }
- }
- }
-
- if t.LineComment != nil {
- for _, comment := range t.LineComment.List {
- if _, ok := standaloneComments[comment.Pos()]; ok {
- delete(standaloneComments, comment.Pos())
- }
- }
- }
- case *ast.ObjectItem:
- if t.LeadComment != nil {
- for _, comment := range t.LeadComment.List {
- if _, ok := standaloneComments[comment.Pos()]; ok {
- delete(standaloneComments, comment.Pos())
- }
- }
- }
-
- if t.LineComment != nil {
- for _, comment := range t.LineComment.List {
- if _, ok := standaloneComments[comment.Pos()]; ok {
- delete(standaloneComments, comment.Pos())
- }
- }
- }
- }
-
- return nn, true
- })
-
- for _, c := range standaloneComments {
- p.standaloneComments = append(p.standaloneComments, c)
- }
-
- sort.Sort(ByPosition(p.standaloneComments))
-}
-
-// output prints creates b printable HCL output and returns it.
-func (p *printer) output(n interface{}) []byte {
- var buf bytes.Buffer
-
- switch t := n.(type) {
- case *ast.File:
- // File doesn't trace so we add the tracing here
- defer un(trace(p, "File"))
- return p.output(t.Node)
- case *ast.ObjectList:
- defer un(trace(p, "ObjectList"))
-
- var index int
- for {
- // Determine the location of the next actual non-comment
- // item. If we're at the end, the next item is at "infinity"
- var nextItem token.Pos
- if index != len(t.Items) {
- nextItem = t.Items[index].Pos()
- } else {
- nextItem = token.Pos{Offset: infinity, Line: infinity}
- }
-
- // Go through the standalone comments in the file and print out
- // the comments that we should be for this object item.
- for _, c := range p.standaloneComments {
- // Go through all the comments in the group. The group
- // should be printed together, not separated by double newlines.
- printed := false
- newlinePrinted := false
- for _, comment := range c.List {
- // We only care about comments after the previous item
- // we've printed so that comments are printed in the
- // correct locations (between two objects for example).
- // And before the next item.
- if comment.Pos().After(p.prev) && comment.Pos().Before(nextItem) {
- // if we hit the end add newlines so we can print the comment
- // we don't do this if prev is invalid which means the
- // beginning of the file since the first comment should
- // be at the first line.
- if !newlinePrinted && p.prev.IsValid() && index == len(t.Items) {
- buf.Write([]byte{newline, newline})
- newlinePrinted = true
- }
-
- // Write the actual comment.
- buf.WriteString(comment.Text)
- buf.WriteByte(newline)
-
- // Set printed to true to note that we printed something
- printed = true
- }
- }
-
- // If we're not at the last item, write a new line so
- // that there is a newline separating this comment from
- // the next object.
- if printed && index != len(t.Items) {
- buf.WriteByte(newline)
- }
- }
-
- if index == len(t.Items) {
- break
- }
-
- buf.Write(p.output(t.Items[index]))
- if index != len(t.Items)-1 {
- // Always write a newline to separate us from the next item
- buf.WriteByte(newline)
-
- // Need to determine if we're going to separate the next item
- // with a blank line. The logic here is simple, though there
- // are a few conditions:
- //
- // 1. The next object is more than one line away anyways,
- // so we need an empty line.
- //
- // 2. The next object is not a "single line" object, so
- // we need an empty line.
- //
- // 3. This current object is not a single line object,
- // so we need an empty line.
- current := t.Items[index]
- next := t.Items[index+1]
- if next.Pos().Line != t.Items[index].Pos().Line+1 ||
- !p.isSingleLineObject(next) ||
- !p.isSingleLineObject(current) {
- buf.WriteByte(newline)
- }
- }
- index++
- }
- case *ast.ObjectKey:
- buf.WriteString(t.Token.Text)
- case *ast.ObjectItem:
- p.prev = t.Pos()
- buf.Write(p.objectItem(t))
- case *ast.LiteralType:
- buf.Write(p.literalType(t))
- case *ast.ListType:
- buf.Write(p.list(t))
- case *ast.ObjectType:
- buf.Write(p.objectType(t))
- default:
- fmt.Printf(" unknown type: %T\n", n)
- }
-
- return buf.Bytes()
-}
-
-func (p *printer) literalType(lit *ast.LiteralType) []byte {
- result := []byte(lit.Token.Text)
- switch lit.Token.Type {
- case token.HEREDOC:
- // Clear the trailing newline from heredocs
- if result[len(result)-1] == '\n' {
- result = result[:len(result)-1]
- }
-
- // Poison lines 2+ so that we don't indent them
- result = p.heredocIndent(result)
- case token.STRING:
- // If this is a multiline string, poison lines 2+ so we don't
- // indent them.
- if bytes.IndexRune(result, '\n') >= 0 {
- result = p.heredocIndent(result)
- }
- }
-
- return result
-}
-
-// objectItem returns the printable HCL form of an object item. An object type
-// starts with one/multiple keys and has a value. The value might be of any
-// type.
-func (p *printer) objectItem(o *ast.ObjectItem) []byte {
- defer un(trace(p, fmt.Sprintf("ObjectItem: %s", o.Keys[0].Token.Text)))
- var buf bytes.Buffer
-
- if o.LeadComment != nil {
- for _, comment := range o.LeadComment.List {
- buf.WriteString(comment.Text)
- buf.WriteByte(newline)
- }
- }
-
- // If key and val are on different lines, treat line comments like lead comments.
- if o.LineComment != nil && o.Val.Pos().Line != o.Keys[0].Pos().Line {
- for _, comment := range o.LineComment.List {
- buf.WriteString(comment.Text)
- buf.WriteByte(newline)
- }
- }
-
- for i, k := range o.Keys {
- buf.WriteString(k.Token.Text)
- buf.WriteByte(blank)
-
- // reach end of key
- if o.Assign.IsValid() && i == len(o.Keys)-1 && len(o.Keys) == 1 {
- buf.WriteString("=")
- buf.WriteByte(blank)
- }
- }
-
- buf.Write(p.output(o.Val))
-
- if o.LineComment != nil && o.Val.Pos().Line == o.Keys[0].Pos().Line {
- buf.WriteByte(blank)
- for _, comment := range o.LineComment.List {
- buf.WriteString(comment.Text)
- }
- }
-
- return buf.Bytes()
-}
-
-// objectType returns the printable HCL form of an object type. An object type
-// begins with a brace and ends with a brace.
-func (p *printer) objectType(o *ast.ObjectType) []byte {
- defer un(trace(p, "ObjectType"))
- var buf bytes.Buffer
- buf.WriteString("{")
-
- var index int
- var nextItem token.Pos
- var commented, newlinePrinted bool
- for {
- // Determine the location of the next actual non-comment
- // item. If we're at the end, the next item is the closing brace
- if index != len(o.List.Items) {
- nextItem = o.List.Items[index].Pos()
- } else {
- nextItem = o.Rbrace
- }
-
- // Go through the standalone comments in the file and print out
- // the comments that we should be for this object item.
- for _, c := range p.standaloneComments {
- printed := false
- var lastCommentPos token.Pos
- for _, comment := range c.List {
- // We only care about comments after the previous item
- // we've printed so that comments are printed in the
- // correct locations (between two objects for example).
- // And before the next item.
- if comment.Pos().After(p.prev) && comment.Pos().Before(nextItem) {
- // If there are standalone comments and the initial newline has not
- // been printed yet, do it now.
- if !newlinePrinted {
- newlinePrinted = true
- buf.WriteByte(newline)
- }
-
- // add newline if it's between other printed nodes
- if index > 0 {
- commented = true
- buf.WriteByte(newline)
- }
-
- // Store this position
- lastCommentPos = comment.Pos()
-
- // output the comment itself
- buf.Write(p.indent(p.heredocIndent([]byte(comment.Text))))
-
- // Set printed to true to note that we printed something
- printed = true
-
- /*
- if index != len(o.List.Items) {
- buf.WriteByte(newline) // do not print on the end
- }
- */
- }
- }
-
- // Stuff to do if we had comments
- if printed {
- // Always write a newline
- buf.WriteByte(newline)
-
- // If there is another item in the object and our comment
- // didn't hug it directly, then make sure there is a blank
- // line separating them.
- if nextItem != o.Rbrace && nextItem.Line != lastCommentPos.Line+1 {
- buf.WriteByte(newline)
- }
- }
- }
-
- if index == len(o.List.Items) {
- p.prev = o.Rbrace
- break
- }
-
- // At this point we are sure that it's not a totally empty block: print
- // the initial newline if it hasn't been printed yet by the previous
- // block about standalone comments.
- if !newlinePrinted {
- buf.WriteByte(newline)
- newlinePrinted = true
- }
-
- // check if we have adjacent one liner items. If yes we'll going to align
- // the comments.
- var aligned []*ast.ObjectItem
- for _, item := range o.List.Items[index:] {
- // we don't group one line lists
- if len(o.List.Items) == 1 {
- break
- }
-
- // one means a oneliner with out any lead comment
- // two means a oneliner with lead comment
- // anything else might be something else
- cur := lines(string(p.objectItem(item)))
- if cur > 2 {
- break
- }
-
- curPos := item.Pos()
-
- nextPos := token.Pos{}
- if index != len(o.List.Items)-1 {
- nextPos = o.List.Items[index+1].Pos()
- }
-
- prevPos := token.Pos{}
- if index != 0 {
- prevPos = o.List.Items[index-1].Pos()
- }
-
- // fmt.Println("DEBUG ----------------")
- // fmt.Printf("prev = %+v prevPos: %s\n", prev, prevPos)
- // fmt.Printf("cur = %+v curPos: %s\n", cur, curPos)
- // fmt.Printf("next = %+v nextPos: %s\n", next, nextPos)
-
- if curPos.Line+1 == nextPos.Line {
- aligned = append(aligned, item)
- index++
- continue
- }
-
- if curPos.Line-1 == prevPos.Line {
- aligned = append(aligned, item)
- index++
-
- // finish if we have a new line or comment next. This happens
- // if the next item is not adjacent
- if curPos.Line+1 != nextPos.Line {
- break
- }
- continue
- }
-
- break
- }
-
- // put newlines if the items are between other non aligned items.
- // newlines are also added if there is a standalone comment already, so
- // check it too
- if !commented && index != len(aligned) {
- buf.WriteByte(newline)
- }
-
- if len(aligned) >= 1 {
- p.prev = aligned[len(aligned)-1].Pos()
-
- items := p.alignedItems(aligned)
- buf.Write(p.indent(items))
- } else {
- p.prev = o.List.Items[index].Pos()
-
- buf.Write(p.indent(p.objectItem(o.List.Items[index])))
- index++
- }
-
- buf.WriteByte(newline)
- }
-
- buf.WriteString("}")
- return buf.Bytes()
-}
-
-func (p *printer) alignedItems(items []*ast.ObjectItem) []byte {
- var buf bytes.Buffer
-
- // find the longest key and value length, needed for alignment
- var longestKeyLen int // longest key length
- var longestValLen int // longest value length
- for _, item := range items {
- key := len(item.Keys[0].Token.Text)
- val := len(p.output(item.Val))
-
- if key > longestKeyLen {
- longestKeyLen = key
- }
-
- if val > longestValLen {
- longestValLen = val
- }
- }
-
- for i, item := range items {
- if item.LeadComment != nil {
- for _, comment := range item.LeadComment.List {
- buf.WriteString(comment.Text)
- buf.WriteByte(newline)
- }
- }
-
- for i, k := range item.Keys {
- keyLen := len(k.Token.Text)
- buf.WriteString(k.Token.Text)
- for i := 0; i < longestKeyLen-keyLen+1; i++ {
- buf.WriteByte(blank)
- }
-
- // reach end of key
- if i == len(item.Keys)-1 && len(item.Keys) == 1 {
- buf.WriteString("=")
- buf.WriteByte(blank)
- }
- }
-
- val := p.output(item.Val)
- valLen := len(val)
- buf.Write(val)
-
- if item.Val.Pos().Line == item.Keys[0].Pos().Line && item.LineComment != nil {
- for i := 0; i < longestValLen-valLen+1; i++ {
- buf.WriteByte(blank)
- }
-
- for _, comment := range item.LineComment.List {
- buf.WriteString(comment.Text)
- }
- }
-
- // do not print for the last item
- if i != len(items)-1 {
- buf.WriteByte(newline)
- }
- }
-
- return buf.Bytes()
-}
-
-// list returns the printable HCL form of an list type.
-func (p *printer) list(l *ast.ListType) []byte {
- if p.isSingleLineList(l) {
- return p.singleLineList(l)
- }
-
- var buf bytes.Buffer
- buf.WriteString("[")
- buf.WriteByte(newline)
-
- var longestLine int
- for _, item := range l.List {
- // for now we assume that the list only contains literal types
- if lit, ok := item.(*ast.LiteralType); ok {
- lineLen := len(lit.Token.Text)
- if lineLen > longestLine {
- longestLine = lineLen
- }
- }
- }
-
- haveEmptyLine := false
- for i, item := range l.List {
- // If we have a lead comment, then we want to write that first
- leadComment := false
- if lit, ok := item.(*ast.LiteralType); ok && lit.LeadComment != nil {
- leadComment = true
-
- // Ensure an empty line before every element with a
- // lead comment (except the first item in a list).
- if !haveEmptyLine && i != 0 {
- buf.WriteByte(newline)
- }
-
- for _, comment := range lit.LeadComment.List {
- buf.Write(p.indent([]byte(comment.Text)))
- buf.WriteByte(newline)
- }
- }
-
- // also indent each line
- val := p.output(item)
- curLen := len(val)
- buf.Write(p.indent(val))
-
- // if this item is a heredoc, then we output the comma on
- // the next line. This is the only case this happens.
- comma := []byte{','}
- if lit, ok := item.(*ast.LiteralType); ok && lit.Token.Type == token.HEREDOC {
- buf.WriteByte(newline)
- comma = p.indent(comma)
- }
-
- buf.Write(comma)
-
- if lit, ok := item.(*ast.LiteralType); ok && lit.LineComment != nil {
- // if the next item doesn't have any comments, do not align
- buf.WriteByte(blank) // align one space
- for i := 0; i < longestLine-curLen; i++ {
- buf.WriteByte(blank)
- }
-
- for _, comment := range lit.LineComment.List {
- buf.WriteString(comment.Text)
- }
- }
-
- buf.WriteByte(newline)
-
- // Ensure an empty line after every element with a
- // lead comment (except the first item in a list).
- haveEmptyLine = leadComment && i != len(l.List)-1
- if haveEmptyLine {
- buf.WriteByte(newline)
- }
- }
-
- buf.WriteString("]")
- return buf.Bytes()
-}
-
-// isSingleLineList returns true if:
-// * they were previously formatted entirely on one line
-// * they consist entirely of literals
-// * there are either no heredoc strings or the list has exactly one element
-// * there are no line comments
-func (printer) isSingleLineList(l *ast.ListType) bool {
- for _, item := range l.List {
- if item.Pos().Line != l.Lbrack.Line {
- return false
- }
-
- lit, ok := item.(*ast.LiteralType)
- if !ok {
- return false
- }
-
- if lit.Token.Type == token.HEREDOC && len(l.List) != 1 {
- return false
- }
-
- if lit.LineComment != nil {
- return false
- }
- }
-
- return true
-}
-
-// singleLineList prints a simple single line list.
-// For a definition of "simple", see isSingleLineList above.
-func (p *printer) singleLineList(l *ast.ListType) []byte {
- buf := &bytes.Buffer{}
-
- buf.WriteString("[")
- for i, item := range l.List {
- if i != 0 {
- buf.WriteString(", ")
- }
-
- // Output the item itself
- buf.Write(p.output(item))
-
- // The heredoc marker needs to be at the end of line.
- if lit, ok := item.(*ast.LiteralType); ok && lit.Token.Type == token.HEREDOC {
- buf.WriteByte(newline)
- }
- }
-
- buf.WriteString("]")
- return buf.Bytes()
-}
-
-// indent indents the lines of the given buffer for each non-empty line
-func (p *printer) indent(buf []byte) []byte {
- var prefix []byte
- if p.cfg.SpacesWidth != 0 {
- for i := 0; i < p.cfg.SpacesWidth; i++ {
- prefix = append(prefix, blank)
- }
- } else {
- prefix = []byte{tab}
- }
-
- var res []byte
- bol := true
- for _, c := range buf {
- if bol && c != '\n' {
- res = append(res, prefix...)
- }
-
- res = append(res, c)
- bol = c == '\n'
- }
- return res
-}
-
-// unindent removes all the indentation from the tombstoned lines
-func (p *printer) unindent(buf []byte) []byte {
- var res []byte
- for i := 0; i < len(buf); i++ {
- skip := len(buf)-i <= len(unindent)
- if !skip {
- skip = !bytes.Equal(unindent, buf[i:i+len(unindent)])
- }
- if skip {
- res = append(res, buf[i])
- continue
- }
-
- // We have a marker. we have to backtrace here and clean out
- // any whitespace ahead of our tombstone up to a \n
- for j := len(res) - 1; j >= 0; j-- {
- if res[j] == '\n' {
- break
- }
-
- res = res[:j]
- }
-
- // Skip the entire unindent marker
- i += len(unindent) - 1
- }
-
- return res
-}
-
-// heredocIndent marks all the 2nd and further lines as unindentable
-func (p *printer) heredocIndent(buf []byte) []byte {
- var res []byte
- bol := false
- for _, c := range buf {
- if bol && c != '\n' {
- res = append(res, unindent...)
- }
- res = append(res, c)
- bol = c == '\n'
- }
- return res
-}
-
-// isSingleLineObject tells whether the given object item is a single
-// line object such as "obj {}".
-//
-// A single line object:
-//
-// * has no lead comments (hence multi-line)
-// * has no assignment
-// * has no values in the stanza (within {})
-//
-func (p *printer) isSingleLineObject(val *ast.ObjectItem) bool {
- // If there is a lead comment, can't be one line
- if val.LeadComment != nil {
- return false
- }
-
- // If there is assignment, we always break by line
- if val.Assign.IsValid() {
- return false
- }
-
- // If it isn't an object type, then its not a single line object
- ot, ok := val.Val.(*ast.ObjectType)
- if !ok {
- return false
- }
-
- // If the object has no items, it is single line!
- return len(ot.List.Items) == 0
-}
-
-func lines(txt string) int {
- endline := 1
- for i := 0; i < len(txt); i++ {
- if txt[i] == '\n' {
- endline++
- }
- }
- return endline
-}
-
-// ----------------------------------------------------------------------------
-// Tracing support
-
-func (p *printer) printTrace(a ...interface{}) {
- if !p.enableTrace {
- return
- }
-
- const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
- const n = len(dots)
- i := 2 * p.indentTrace
- for i > n {
- fmt.Print(dots)
- i -= n
- }
- // i <= n
- fmt.Print(dots[0:i])
- fmt.Println(a...)
-}
-
-func trace(p *printer, msg string) *printer {
- p.printTrace(msg, "(")
- p.indentTrace++
- return p
-}
-
-// Usage pattern: defer un(trace(p, "..."))
-func un(p *printer) {
- p.indentTrace--
- p.printTrace(")")
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/printer/printer.go b/vendor/github.com/hashicorp/hcl/hcl/printer/printer.go
deleted file mode 100644
index 6617ab8..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/printer/printer.go
+++ /dev/null
@@ -1,66 +0,0 @@
-// Package printer implements printing of AST nodes to HCL format.
-package printer
-
-import (
- "bytes"
- "io"
- "text/tabwriter"
-
- "github.com/hashicorp/hcl/hcl/ast"
- "github.com/hashicorp/hcl/hcl/parser"
-)
-
-var DefaultConfig = Config{
- SpacesWidth: 2,
-}
-
-// A Config node controls the output of Fprint.
-type Config struct {
- SpacesWidth int // if set, it will use spaces instead of tabs for alignment
-}
-
-func (c *Config) Fprint(output io.Writer, node ast.Node) error {
- p := &printer{
- cfg: *c,
- comments: make([]*ast.CommentGroup, 0),
- standaloneComments: make([]*ast.CommentGroup, 0),
- // enableTrace: true,
- }
-
- p.collectComments(node)
-
- if _, err := output.Write(p.unindent(p.output(node))); err != nil {
- return err
- }
-
- // flush tabwriter, if any
- var err error
- if tw, _ := output.(*tabwriter.Writer); tw != nil {
- err = tw.Flush()
- }
-
- return err
-}
-
-// Fprint "pretty-prints" an HCL node to output
-// It calls Config.Fprint with default settings.
-func Fprint(output io.Writer, node ast.Node) error {
- return DefaultConfig.Fprint(output, node)
-}
-
-// Format formats src HCL and returns the result.
-func Format(src []byte) ([]byte, error) {
- node, err := parser.Parse(src)
- if err != nil {
- return nil, err
- }
-
- var buf bytes.Buffer
- if err := DefaultConfig.Fprint(&buf, node); err != nil {
- return nil, err
- }
-
- // Add trailing newline to result
- buf.WriteString("\n")
- return buf.Bytes(), nil
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/scanner/scanner.go b/vendor/github.com/hashicorp/hcl/hcl/scanner/scanner.go
deleted file mode 100644
index 624a18f..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/scanner/scanner.go
+++ /dev/null
@@ -1,652 +0,0 @@
-// Package scanner implements a scanner for HCL (HashiCorp Configuration
-// Language) source text.
-package scanner
-
-import (
- "bytes"
- "fmt"
- "os"
- "regexp"
- "unicode"
- "unicode/utf8"
-
- "github.com/hashicorp/hcl/hcl/token"
-)
-
-// eof represents a marker rune for the end of the reader.
-const eof = rune(0)
-
-// Scanner defines a lexical scanner
-type Scanner struct {
- buf *bytes.Buffer // Source buffer for advancing and scanning
- src []byte // Source buffer for immutable access
-
- // Source Position
- srcPos token.Pos // current position
- prevPos token.Pos // previous position, used for peek() method
-
- lastCharLen int // length of last character in bytes
- lastLineLen int // length of last line in characters (for correct column reporting)
-
- tokStart int // token text start position
- tokEnd int // token text end position
-
- // Error is called for each error encountered. If no Error
- // function is set, the error is reported to os.Stderr.
- Error func(pos token.Pos, msg string)
-
- // ErrorCount is incremented by one for each error encountered.
- ErrorCount int
-
- // tokPos is the start position of most recently scanned token; set by
- // Scan. The Filename field is always left untouched by the Scanner. If
- // an error is reported (via Error) and Position is invalid, the scanner is
- // not inside a token.
- tokPos token.Pos
-}
-
-// New creates and initializes a new instance of Scanner using src as
-// its source content.
-func New(src []byte) *Scanner {
- // even though we accept a src, we read from a io.Reader compatible type
- // (*bytes.Buffer). So in the future we might easily change it to streaming
- // read.
- b := bytes.NewBuffer(src)
- s := &Scanner{
- buf: b,
- src: src,
- }
-
- // srcPosition always starts with 1
- s.srcPos.Line = 1
- return s
-}
-
-// next reads the next rune from the bufferred reader. Returns the rune(0) if
-// an error occurs (or io.EOF is returned).
-func (s *Scanner) next() rune {
- ch, size, err := s.buf.ReadRune()
- if err != nil {
- // advance for error reporting
- s.srcPos.Column++
- s.srcPos.Offset += size
- s.lastCharLen = size
- return eof
- }
-
- // remember last position
- s.prevPos = s.srcPos
-
- s.srcPos.Column++
- s.lastCharLen = size
- s.srcPos.Offset += size
-
- if ch == utf8.RuneError && size == 1 {
- s.err("illegal UTF-8 encoding")
- return ch
- }
-
- if ch == '\n' {
- s.srcPos.Line++
- s.lastLineLen = s.srcPos.Column
- s.srcPos.Column = 0
- }
-
- if ch == '\x00' {
- s.err("unexpected null character (0x00)")
- return eof
- }
-
- if ch == '\uE123' {
- s.err("unicode code point U+E123 reserved for internal use")
- return utf8.RuneError
- }
-
- // debug
- // fmt.Printf("ch: %q, offset:column: %d:%d\n", ch, s.srcPos.Offset, s.srcPos.Column)
- return ch
-}
-
-// unread unreads the previous read Rune and updates the source position
-func (s *Scanner) unread() {
- if err := s.buf.UnreadRune(); err != nil {
- panic(err) // this is user fault, we should catch it
- }
- s.srcPos = s.prevPos // put back last position
-}
-
-// peek returns the next rune without advancing the reader.
-func (s *Scanner) peek() rune {
- peek, _, err := s.buf.ReadRune()
- if err != nil {
- return eof
- }
-
- s.buf.UnreadRune()
- return peek
-}
-
-// Scan scans the next token and returns the token.
-func (s *Scanner) Scan() token.Token {
- ch := s.next()
-
- // skip white space
- for isWhitespace(ch) {
- ch = s.next()
- }
-
- var tok token.Type
-
- // token text markings
- s.tokStart = s.srcPos.Offset - s.lastCharLen
-
- // token position, initial next() is moving the offset by one(size of rune
- // actually), though we are interested with the starting point
- s.tokPos.Offset = s.srcPos.Offset - s.lastCharLen
- if s.srcPos.Column > 0 {
- // common case: last character was not a '\n'
- s.tokPos.Line = s.srcPos.Line
- s.tokPos.Column = s.srcPos.Column
- } else {
- // last character was a '\n'
- // (we cannot be at the beginning of the source
- // since we have called next() at least once)
- s.tokPos.Line = s.srcPos.Line - 1
- s.tokPos.Column = s.lastLineLen
- }
-
- switch {
- case isLetter(ch):
- tok = token.IDENT
- lit := s.scanIdentifier()
- if lit == "true" || lit == "false" {
- tok = token.BOOL
- }
- case isDecimal(ch):
- tok = s.scanNumber(ch)
- default:
- switch ch {
- case eof:
- tok = token.EOF
- case '"':
- tok = token.STRING
- s.scanString()
- case '#', '/':
- tok = token.COMMENT
- s.scanComment(ch)
- case '.':
- tok = token.PERIOD
- ch = s.peek()
- if isDecimal(ch) {
- tok = token.FLOAT
- ch = s.scanMantissa(ch)
- ch = s.scanExponent(ch)
- }
- case '<':
- tok = token.HEREDOC
- s.scanHeredoc()
- case '[':
- tok = token.LBRACK
- case ']':
- tok = token.RBRACK
- case '{':
- tok = token.LBRACE
- case '}':
- tok = token.RBRACE
- case ',':
- tok = token.COMMA
- case '=':
- tok = token.ASSIGN
- case '+':
- tok = token.ADD
- case '-':
- if isDecimal(s.peek()) {
- ch := s.next()
- tok = s.scanNumber(ch)
- } else {
- tok = token.SUB
- }
- default:
- s.err("illegal char")
- }
- }
-
- // finish token ending
- s.tokEnd = s.srcPos.Offset
-
- // create token literal
- var tokenText string
- if s.tokStart >= 0 {
- tokenText = string(s.src[s.tokStart:s.tokEnd])
- }
- s.tokStart = s.tokEnd // ensure idempotency of tokenText() call
-
- return token.Token{
- Type: tok,
- Pos: s.tokPos,
- Text: tokenText,
- }
-}
-
-func (s *Scanner) scanComment(ch rune) {
- // single line comments
- if ch == '#' || (ch == '/' && s.peek() != '*') {
- if ch == '/' && s.peek() != '/' {
- s.err("expected '/' for comment")
- return
- }
-
- ch = s.next()
- for ch != '\n' && ch >= 0 && ch != eof {
- ch = s.next()
- }
- if ch != eof && ch >= 0 {
- s.unread()
- }
- return
- }
-
- // be sure we get the character after /* This allows us to find comment's
- // that are not erminated
- if ch == '/' {
- s.next()
- ch = s.next() // read character after "/*"
- }
-
- // look for /* - style comments
- for {
- if ch < 0 || ch == eof {
- s.err("comment not terminated")
- break
- }
-
- ch0 := ch
- ch = s.next()
- if ch0 == '*' && ch == '/' {
- break
- }
- }
-}
-
-// scanNumber scans a HCL number definition starting with the given rune
-func (s *Scanner) scanNumber(ch rune) token.Type {
- if ch == '0' {
- // check for hexadecimal, octal or float
- ch = s.next()
- if ch == 'x' || ch == 'X' {
- // hexadecimal
- ch = s.next()
- found := false
- for isHexadecimal(ch) {
- ch = s.next()
- found = true
- }
-
- if !found {
- s.err("illegal hexadecimal number")
- }
-
- if ch != eof {
- s.unread()
- }
-
- return token.NUMBER
- }
-
- // now it's either something like: 0421(octal) or 0.1231(float)
- illegalOctal := false
- for isDecimal(ch) {
- ch = s.next()
- if ch == '8' || ch == '9' {
- // this is just a possibility. For example 0159 is illegal, but
- // 0159.23 is valid. So we mark a possible illegal octal. If
- // the next character is not a period, we'll print the error.
- illegalOctal = true
- }
- }
-
- if ch == 'e' || ch == 'E' {
- ch = s.scanExponent(ch)
- return token.FLOAT
- }
-
- if ch == '.' {
- ch = s.scanFraction(ch)
-
- if ch == 'e' || ch == 'E' {
- ch = s.next()
- ch = s.scanExponent(ch)
- }
- return token.FLOAT
- }
-
- if illegalOctal {
- s.err("illegal octal number")
- }
-
- if ch != eof {
- s.unread()
- }
- return token.NUMBER
- }
-
- s.scanMantissa(ch)
- ch = s.next() // seek forward
- if ch == 'e' || ch == 'E' {
- ch = s.scanExponent(ch)
- return token.FLOAT
- }
-
- if ch == '.' {
- ch = s.scanFraction(ch)
- if ch == 'e' || ch == 'E' {
- ch = s.next()
- ch = s.scanExponent(ch)
- }
- return token.FLOAT
- }
-
- if ch != eof {
- s.unread()
- }
- return token.NUMBER
-}
-
-// scanMantissa scans the mantissa beginning from the rune. It returns the next
-// non decimal rune. It's used to determine wheter it's a fraction or exponent.
-func (s *Scanner) scanMantissa(ch rune) rune {
- scanned := false
- for isDecimal(ch) {
- ch = s.next()
- scanned = true
- }
-
- if scanned && ch != eof {
- s.unread()
- }
- return ch
-}
-
-// scanFraction scans the fraction after the '.' rune
-func (s *Scanner) scanFraction(ch rune) rune {
- if ch == '.' {
- ch = s.peek() // we peek just to see if we can move forward
- ch = s.scanMantissa(ch)
- }
- return ch
-}
-
-// scanExponent scans the remaining parts of an exponent after the 'e' or 'E'
-// rune.
-func (s *Scanner) scanExponent(ch rune) rune {
- if ch == 'e' || ch == 'E' {
- ch = s.next()
- if ch == '-' || ch == '+' {
- ch = s.next()
- }
- ch = s.scanMantissa(ch)
- }
- return ch
-}
-
-// scanHeredoc scans a heredoc string
-func (s *Scanner) scanHeredoc() {
- // Scan the second '<' in example: '<<EOF'
- if s.next() != '<' {
- s.err("heredoc expected second '<', didn't see it")
- return
- }
-
- // Get the original offset so we can read just the heredoc ident
- offs := s.srcPos.Offset
-
- // Scan the identifier
- ch := s.next()
-
- // Indented heredoc syntax
- if ch == '-' {
- ch = s.next()
- }
-
- for isLetter(ch) || isDigit(ch) {
- ch = s.next()
- }
-
- // If we reached an EOF then that is not good
- if ch == eof {
- s.err("heredoc not terminated")
- return
- }
-
- // Ignore the '\r' in Windows line endings
- if ch == '\r' {
- if s.peek() == '\n' {
- ch = s.next()
- }
- }
-
- // If we didn't reach a newline then that is also not good
- if ch != '\n' {
- s.err("invalid characters in heredoc anchor")
- return
- }
-
- // Read the identifier
- identBytes := s.src[offs : s.srcPos.Offset-s.lastCharLen]
- if len(identBytes) == 0 || (len(identBytes) == 1 && identBytes[0] == '-') {
- s.err("zero-length heredoc anchor")
- return
- }
-
- var identRegexp *regexp.Regexp
- if identBytes[0] == '-' {
- identRegexp = regexp.MustCompile(fmt.Sprintf(`^[[:space:]]*%s\r*\z`, identBytes[1:]))
- } else {
- identRegexp = regexp.MustCompile(fmt.Sprintf(`^[[:space:]]*%s\r*\z`, identBytes))
- }
-
- // Read the actual string value
- lineStart := s.srcPos.Offset
- for {
- ch := s.next()
-
- // Special newline handling.
- if ch == '\n' {
- // Math is fast, so we first compare the byte counts to see if we have a chance
- // of seeing the same identifier - if the length is less than the number of bytes
- // in the identifier, this cannot be a valid terminator.
- lineBytesLen := s.srcPos.Offset - s.lastCharLen - lineStart
- if lineBytesLen >= len(identBytes) && identRegexp.Match(s.src[lineStart:s.srcPos.Offset-s.lastCharLen]) {
- break
- }
-
- // Not an anchor match, record the start of a new line
- lineStart = s.srcPos.Offset
- }
-
- if ch == eof {
- s.err("heredoc not terminated")
- return
- }
- }
-
- return
-}
-
-// scanString scans a quoted string
-func (s *Scanner) scanString() {
- braces := 0
- for {
- // '"' opening already consumed
- // read character after quote
- ch := s.next()
-
- if (ch == '\n' && braces == 0) || ch < 0 || ch == eof {
- s.err("literal not terminated")
- return
- }
-
- if ch == '"' && braces == 0 {
- break
- }
-
- // If we're going into a ${} then we can ignore quotes for awhile
- if braces == 0 && ch == '$' && s.peek() == '{' {
- braces++
- s.next()
- } else if braces > 0 && ch == '{' {
- braces++
- }
- if braces > 0 && ch == '}' {
- braces--
- }
-
- if ch == '\\' {
- s.scanEscape()
- }
- }
-
- return
-}
-
-// scanEscape scans an escape sequence
-func (s *Scanner) scanEscape() rune {
- // http://en.cppreference.com/w/cpp/language/escape
- ch := s.next() // read character after '/'
- switch ch {
- case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '"':
- // nothing to do
- case '0', '1', '2', '3', '4', '5', '6', '7':
- // octal notation
- ch = s.scanDigits(ch, 8, 3)
- case 'x':
- // hexademical notation
- ch = s.scanDigits(s.next(), 16, 2)
- case 'u':
- // universal character name
- ch = s.scanDigits(s.next(), 16, 4)
- case 'U':
- // universal character name
- ch = s.scanDigits(s.next(), 16, 8)
- default:
- s.err("illegal char escape")
- }
- return ch
-}
-
-// scanDigits scans a rune with the given base for n times. For example an
-// octal notation \184 would yield in scanDigits(ch, 8, 3)
-func (s *Scanner) scanDigits(ch rune, base, n int) rune {
- start := n
- for n > 0 && digitVal(ch) < base {
- ch = s.next()
- if ch == eof {
- // If we see an EOF, we halt any more scanning of digits
- // immediately.
- break
- }
-
- n--
- }
- if n > 0 {
- s.err("illegal char escape")
- }
-
- if n != start && ch != eof {
- // we scanned all digits, put the last non digit char back,
- // only if we read anything at all
- s.unread()
- }
-
- return ch
-}
-
-// scanIdentifier scans an identifier and returns the literal string
-func (s *Scanner) scanIdentifier() string {
- offs := s.srcPos.Offset - s.lastCharLen
- ch := s.next()
- for isLetter(ch) || isDigit(ch) || ch == '-' || ch == '.' {
- ch = s.next()
- }
-
- if ch != eof {
- s.unread() // we got identifier, put back latest char
- }
-
- return string(s.src[offs:s.srcPos.Offset])
-}
-
-// recentPosition returns the position of the character immediately after the
-// character or token returned by the last call to Scan.
-func (s *Scanner) recentPosition() (pos token.Pos) {
- pos.Offset = s.srcPos.Offset - s.lastCharLen
- switch {
- case s.srcPos.Column > 0:
- // common case: last character was not a '\n'
- pos.Line = s.srcPos.Line
- pos.Column = s.srcPos.Column
- case s.lastLineLen > 0:
- // last character was a '\n'
- // (we cannot be at the beginning of the source
- // since we have called next() at least once)
- pos.Line = s.srcPos.Line - 1
- pos.Column = s.lastLineLen
- default:
- // at the beginning of the source
- pos.Line = 1
- pos.Column = 1
- }
- return
-}
-
-// err prints the error of any scanning to s.Error function. If the function is
-// not defined, by default it prints them to os.Stderr
-func (s *Scanner) err(msg string) {
- s.ErrorCount++
- pos := s.recentPosition()
-
- if s.Error != nil {
- s.Error(pos, msg)
- return
- }
-
- fmt.Fprintf(os.Stderr, "%s: %s\n", pos, msg)
-}
-
-// isHexadecimal returns true if the given rune is a letter
-func isLetter(ch rune) bool {
- return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= 0x80 && unicode.IsLetter(ch)
-}
-
-// isDigit returns true if the given rune is a decimal digit
-func isDigit(ch rune) bool {
- return '0' <= ch && ch <= '9' || ch >= 0x80 && unicode.IsDigit(ch)
-}
-
-// isDecimal returns true if the given rune is a decimal number
-func isDecimal(ch rune) bool {
- return '0' <= ch && ch <= '9'
-}
-
-// isHexadecimal returns true if the given rune is an hexadecimal number
-func isHexadecimal(ch rune) bool {
- return '0' <= ch && ch <= '9' || 'a' <= ch && ch <= 'f' || 'A' <= ch && ch <= 'F'
-}
-
-// isWhitespace returns true if the rune is a space, tab, newline or carriage return
-func isWhitespace(ch rune) bool {
- return ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'
-}
-
-// digitVal returns the integer value of a given octal,decimal or hexadecimal rune
-func digitVal(ch rune) int {
- switch {
- case '0' <= ch && ch <= '9':
- return int(ch - '0')
- case 'a' <= ch && ch <= 'f':
- return int(ch - 'a' + 10)
- case 'A' <= ch && ch <= 'F':
- return int(ch - 'A' + 10)
- }
- return 16 // larger than any legal digit val
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/strconv/quote.go b/vendor/github.com/hashicorp/hcl/hcl/strconv/quote.go
deleted file mode 100644
index 5f981ea..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/strconv/quote.go
+++ /dev/null
@@ -1,241 +0,0 @@
-package strconv
-
-import (
- "errors"
- "unicode/utf8"
-)
-
-// ErrSyntax indicates that a value does not have the right syntax for the target type.
-var ErrSyntax = errors.New("invalid syntax")
-
-// Unquote interprets s as a single-quoted, double-quoted,
-// or backquoted Go string literal, returning the string value
-// that s quotes. (If s is single-quoted, it would be a Go
-// character literal; Unquote returns the corresponding
-// one-character string.)
-func Unquote(s string) (t string, err error) {
- n := len(s)
- if n < 2 {
- return "", ErrSyntax
- }
- quote := s[0]
- if quote != s[n-1] {
- return "", ErrSyntax
- }
- s = s[1 : n-1]
-
- if quote != '"' {
- return "", ErrSyntax
- }
- if !contains(s, '$') && !contains(s, '{') && contains(s, '\n') {
- return "", ErrSyntax
- }
-
- // Is it trivial? Avoid allocation.
- if !contains(s, '\\') && !contains(s, quote) && !contains(s, '$') {
- switch quote {
- case '"':
- return s, nil
- case '\'':
- r, size := utf8.DecodeRuneInString(s)
- if size == len(s) && (r != utf8.RuneError || size != 1) {
- return s, nil
- }
- }
- }
-
- var runeTmp [utf8.UTFMax]byte
- buf := make([]byte, 0, 3*len(s)/2) // Try to avoid more allocations.
- for len(s) > 0 {
- // If we're starting a '${}' then let it through un-unquoted.
- // Specifically: we don't unquote any characters within the `${}`
- // section.
- if s[0] == '$' && len(s) > 1 && s[1] == '{' {
- buf = append(buf, '$', '{')
- s = s[2:]
-
- // Continue reading until we find the closing brace, copying as-is
- braces := 1
- for len(s) > 0 && braces > 0 {
- r, size := utf8.DecodeRuneInString(s)
- if r == utf8.RuneError {
- return "", ErrSyntax
- }
-
- s = s[size:]
-
- n := utf8.EncodeRune(runeTmp[:], r)
- buf = append(buf, runeTmp[:n]...)
-
- switch r {
- case '{':
- braces++
- case '}':
- braces--
- }
- }
- if braces != 0 {
- return "", ErrSyntax
- }
- if len(s) == 0 {
- // If there's no string left, we're done!
- break
- } else {
- // If there's more left, we need to pop back up to the top of the loop
- // in case there's another interpolation in this string.
- continue
- }
- }
-
- if s[0] == '\n' {
- return "", ErrSyntax
- }
-
- c, multibyte, ss, err := unquoteChar(s, quote)
- if err != nil {
- return "", err
- }
- s = ss
- if c < utf8.RuneSelf || !multibyte {
- buf = append(buf, byte(c))
- } else {
- n := utf8.EncodeRune(runeTmp[:], c)
- buf = append(buf, runeTmp[:n]...)
- }
- if quote == '\'' && len(s) != 0 {
- // single-quoted must be single character
- return "", ErrSyntax
- }
- }
- return string(buf), nil
-}
-
-// contains reports whether the string contains the byte c.
-func contains(s string, c byte) bool {
- for i := 0; i < len(s); i++ {
- if s[i] == c {
- return true
- }
- }
- return false
-}
-
-func unhex(b byte) (v rune, ok bool) {
- c := rune(b)
- switch {
- case '0' <= c && c <= '9':
- return c - '0', true
- case 'a' <= c && c <= 'f':
- return c - 'a' + 10, true
- case 'A' <= c && c <= 'F':
- return c - 'A' + 10, true
- }
- return
-}
-
-func unquoteChar(s string, quote byte) (value rune, multibyte bool, tail string, err error) {
- // easy cases
- switch c := s[0]; {
- case c == quote && (quote == '\'' || quote == '"'):
- err = ErrSyntax
- return
- case c >= utf8.RuneSelf:
- r, size := utf8.DecodeRuneInString(s)
- return r, true, s[size:], nil
- case c != '\\':
- return rune(s[0]), false, s[1:], nil
- }
-
- // hard case: c is backslash
- if len(s) <= 1 {
- err = ErrSyntax
- return
- }
- c := s[1]
- s = s[2:]
-
- switch c {
- case 'a':
- value = '\a'
- case 'b':
- value = '\b'
- case 'f':
- value = '\f'
- case 'n':
- value = '\n'
- case 'r':
- value = '\r'
- case 't':
- value = '\t'
- case 'v':
- value = '\v'
- case 'x', 'u', 'U':
- n := 0
- switch c {
- case 'x':
- n = 2
- case 'u':
- n = 4
- case 'U':
- n = 8
- }
- var v rune
- if len(s) < n {
- err = ErrSyntax
- return
- }
- for j := 0; j < n; j++ {
- x, ok := unhex(s[j])
- if !ok {
- err = ErrSyntax
- return
- }
- v = v<<4 | x
- }
- s = s[n:]
- if c == 'x' {
- // single-byte string, possibly not UTF-8
- value = v
- break
- }
- if v > utf8.MaxRune {
- err = ErrSyntax
- return
- }
- value = v
- multibyte = true
- case '0', '1', '2', '3', '4', '5', '6', '7':
- v := rune(c) - '0'
- if len(s) < 2 {
- err = ErrSyntax
- return
- }
- for j := 0; j < 2; j++ { // one digit already; two more
- x := rune(s[j]) - '0'
- if x < 0 || x > 7 {
- err = ErrSyntax
- return
- }
- v = (v << 3) | x
- }
- s = s[2:]
- if v > 255 {
- err = ErrSyntax
- return
- }
- value = v
- case '\\':
- value = '\\'
- case '\'', '"':
- if c != quote {
- err = ErrSyntax
- return
- }
- value = rune(c)
- default:
- err = ErrSyntax
- return
- }
- tail = s
- return
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/token/position.go b/vendor/github.com/hashicorp/hcl/hcl/token/position.go
deleted file mode 100644
index 59c1bb7..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/token/position.go
+++ /dev/null
@@ -1,46 +0,0 @@
-package token
-
-import "fmt"
-
-// Pos describes an arbitrary source position
-// including the file, line, and column location.
-// A Position is valid if the line number is > 0.
-type Pos struct {
- Filename string // filename, if any
- Offset int // offset, starting at 0
- Line int // line number, starting at 1
- Column int // column number, starting at 1 (character count)
-}
-
-// IsValid returns true if the position is valid.
-func (p *Pos) IsValid() bool { return p.Line > 0 }
-
-// String returns a string in one of several forms:
-//
-// file:line:column valid position with file name
-// line:column valid position without file name
-// file invalid position with file name
-// - invalid position without file name
-func (p Pos) String() string {
- s := p.Filename
- if p.IsValid() {
- if s != "" {
- s += ":"
- }
- s += fmt.Sprintf("%d:%d", p.Line, p.Column)
- }
- if s == "" {
- s = "-"
- }
- return s
-}
-
-// Before reports whether the position p is before u.
-func (p Pos) Before(u Pos) bool {
- return u.Offset > p.Offset || u.Line > p.Line
-}
-
-// After reports whether the position p is after u.
-func (p Pos) After(u Pos) bool {
- return u.Offset < p.Offset || u.Line < p.Line
-}
diff --git a/vendor/github.com/hashicorp/hcl/hcl/token/token.go b/vendor/github.com/hashicorp/hcl/hcl/token/token.go
deleted file mode 100644
index e37c066..0000000
--- a/vendor/github.com/hashicorp/hcl/hcl/token/token.go
+++ /dev/null
@@ -1,219 +0,0 @@
-// Package token defines constants representing the lexical tokens for HCL
-// (HashiCorp Configuration Language)
-package token
-
-import (
- "fmt"
- "strconv"
- "strings"
-
- hclstrconv "github.com/hashicorp/hcl/hcl/strconv"
-)
-
-// Token defines a single HCL token which can be obtained via the Scanner
-type Token struct {
- Type Type
- Pos Pos
- Text string
- JSON bool
-}
-
-// Type is the set of lexical tokens of the HCL (HashiCorp Configuration Language)
-type Type int
-
-const (
- // Special tokens
- ILLEGAL Type = iota
- EOF
- COMMENT
-
- identifier_beg
- IDENT // literals
- literal_beg
- NUMBER // 12345
- FLOAT // 123.45
- BOOL // true,false
- STRING // "abc"
- HEREDOC // <<FOO\nbar\nFOO
- literal_end
- identifier_end
-
- operator_beg
- LBRACK // [
- LBRACE // {
- COMMA // ,
- PERIOD // .
-
- RBRACK // ]
- RBRACE // }
-
- ASSIGN // =
- ADD // +
- SUB // -
- operator_end
-)
-
-var tokens = [...]string{
- ILLEGAL: "ILLEGAL",
-
- EOF: "EOF",
- COMMENT: "COMMENT",
-
- IDENT: "IDENT",
- NUMBER: "NUMBER",
- FLOAT: "FLOAT",
- BOOL: "BOOL",
- STRING: "STRING",
-
- LBRACK: "LBRACK",
- LBRACE: "LBRACE",
- COMMA: "COMMA",
- PERIOD: "PERIOD",
- HEREDOC: "HEREDOC",
-
- RBRACK: "RBRACK",
- RBRACE: "RBRACE",
-
- ASSIGN: "ASSIGN",
- ADD: "ADD",
- SUB: "SUB",
-}
-
-// String returns the string corresponding to the token tok.
-func (t Type) String() string {
- s := ""
- if 0 <= t && t < Type(len(tokens)) {
- s = tokens[t]
- }
- if s == "" {
- s = "token(" + strconv.Itoa(int(t)) + ")"
- }
- return s
-}
-
-// IsIdentifier returns true for tokens corresponding to identifiers and basic
-// type literals; it returns false otherwise.
-func (t Type) IsIdentifier() bool { return identifier_beg < t && t < identifier_end }
-
-// IsLiteral returns true for tokens corresponding to basic type literals; it
-// returns false otherwise.
-func (t Type) IsLiteral() bool { return literal_beg < t && t < literal_end }
-
-// IsOperator returns true for tokens corresponding to operators and
-// delimiters; it returns false otherwise.
-func (t Type) IsOperator() bool { return operator_beg < t && t < operator_end }
-
-// String returns the token's literal text. Note that this is only
-// applicable for certain token types, such as token.IDENT,
-// token.STRING, etc..
-func (t Token) String() string {
- return fmt.Sprintf("%s %s %s", t.Pos.String(), t.Type.String(), t.Text)
-}
-
-// Value returns the properly typed value for this token. The type of
-// the returned interface{} is guaranteed based on the Type field.
-//
-// This can only be called for literal types. If it is called for any other
-// type, this will panic.
-func (t Token) Value() interface{} {
- switch t.Type {
- case BOOL:
- if t.Text == "true" {
- return true
- } else if t.Text == "false" {
- return false
- }
-
- panic("unknown bool value: " + t.Text)
- case FLOAT:
- v, err := strconv.ParseFloat(t.Text, 64)
- if err != nil {
- panic(err)
- }
-
- return float64(v)
- case NUMBER:
- v, err := strconv.ParseInt(t.Text, 0, 64)
- if err != nil {
- panic(err)
- }
-
- return int64(v)
- case IDENT:
- return t.Text
- case HEREDOC:
- return unindentHeredoc(t.Text)
- case STRING:
- // Determine the Unquote method to use. If it came from JSON,
- // then we need to use the built-in unquote since we have to
- // escape interpolations there.
- f := hclstrconv.Unquote
- if t.JSON {
- f = strconv.Unquote
- }
-
- // This case occurs if json null is used
- if t.Text == "" {
- return ""
- }
-
- v, err := f(t.Text)
- if err != nil {
- panic(fmt.Sprintf("unquote %s err: %s", t.Text, err))
- }
-
- return v
- default:
- panic(fmt.Sprintf("unimplemented Value for type: %s", t.Type))
- }
-}
-
-// unindentHeredoc returns the string content of a HEREDOC if it is started with <<
-// and the content of a HEREDOC with the hanging indent removed if it is started with
-// a <<-, and the terminating line is at least as indented as the least indented line.
-func unindentHeredoc(heredoc string) string {
- // We need to find the end of the marker
- idx := strings.IndexByte(heredoc, '\n')
- if idx == -1 {
- panic("heredoc doesn't contain newline")
- }
-
- unindent := heredoc[2] == '-'
-
- // We can optimize if the heredoc isn't marked for indentation
- if !unindent {
- return string(heredoc[idx+1 : len(heredoc)-idx+1])
- }
-
- // We need to unindent each line based on the indentation level of the marker
- lines := strings.Split(string(heredoc[idx+1:len(heredoc)-idx+2]), "\n")
- whitespacePrefix := lines[len(lines)-1]
-
- isIndented := true
- for _, v := range lines {
- if strings.HasPrefix(v, whitespacePrefix) {
- continue
- }
-
- isIndented = false
- break
- }
-
- // If all lines are not at least as indented as the terminating mark, return the
- // heredoc as is, but trim the leading space from the marker on the final line.
- if !isIndented {
- return strings.TrimRight(string(heredoc[idx+1:len(heredoc)-idx+1]), " \t")
- }
-
- unindentedLines := make([]string, len(lines))
- for k, v := range lines {
- if k == len(lines)-1 {
- unindentedLines[k] = ""
- break
- }
-
- unindentedLines[k] = strings.TrimPrefix(v, whitespacePrefix)
- }
-
- return strings.Join(unindentedLines, "\n")
-}
diff --git a/vendor/github.com/hashicorp/hcl/json/parser/flatten.go b/vendor/github.com/hashicorp/hcl/json/parser/flatten.go
deleted file mode 100644
index f652d6f..0000000
--- a/vendor/github.com/hashicorp/hcl/json/parser/flatten.go
+++ /dev/null
@@ -1,117 +0,0 @@
-package parser
-
-import "github.com/hashicorp/hcl/hcl/ast"
-
-// flattenObjects takes an AST node, walks it, and flattens
-func flattenObjects(node ast.Node) {
- ast.Walk(node, func(n ast.Node) (ast.Node, bool) {
- // We only care about lists, because this is what we modify
- list, ok := n.(*ast.ObjectList)
- if !ok {
- return n, true
- }
-
- // Rebuild the item list
- items := make([]*ast.ObjectItem, 0, len(list.Items))
- frontier := make([]*ast.ObjectItem, len(list.Items))
- copy(frontier, list.Items)
- for len(frontier) > 0 {
- // Pop the current item
- n := len(frontier)
- item := frontier[n-1]
- frontier = frontier[:n-1]
-
- switch v := item.Val.(type) {
- case *ast.ObjectType:
- items, frontier = flattenObjectType(v, item, items, frontier)
- case *ast.ListType:
- items, frontier = flattenListType(v, item, items, frontier)
- default:
- items = append(items, item)
- }
- }
-
- // Reverse the list since the frontier model runs things backwards
- for i := len(items)/2 - 1; i >= 0; i-- {
- opp := len(items) - 1 - i
- items[i], items[opp] = items[opp], items[i]
- }
-
- // Done! Set the original items
- list.Items = items
- return n, true
- })
-}
-
-func flattenListType(
- ot *ast.ListType,
- item *ast.ObjectItem,
- items []*ast.ObjectItem,
- frontier []*ast.ObjectItem) ([]*ast.ObjectItem, []*ast.ObjectItem) {
- // If the list is empty, keep the original list
- if len(ot.List) == 0 {
- items = append(items, item)
- return items, frontier
- }
-
- // All the elements of this object must also be objects!
- for _, subitem := range ot.List {
- if _, ok := subitem.(*ast.ObjectType); !ok {
- items = append(items, item)
- return items, frontier
- }
- }
-
- // Great! We have a match go through all the items and flatten
- for _, elem := range ot.List {
- // Add it to the frontier so that we can recurse
- frontier = append(frontier, &ast.ObjectItem{
- Keys: item.Keys,
- Assign: item.Assign,
- Val: elem,
- LeadComment: item.LeadComment,
- LineComment: item.LineComment,
- })
- }
-
- return items, frontier
-}
-
-func flattenObjectType(
- ot *ast.ObjectType,
- item *ast.ObjectItem,
- items []*ast.ObjectItem,
- frontier []*ast.ObjectItem) ([]*ast.ObjectItem, []*ast.ObjectItem) {
- // If the list has no items we do not have to flatten anything
- if ot.List.Items == nil {
- items = append(items, item)
- return items, frontier
- }
-
- // All the elements of this object must also be objects!
- for _, subitem := range ot.List.Items {
- if _, ok := subitem.Val.(*ast.ObjectType); !ok {
- items = append(items, item)
- return items, frontier
- }
- }
-
- // Great! We have a match go through all the items and flatten
- for _, subitem := range ot.List.Items {
- // Copy the new key
- keys := make([]*ast.ObjectKey, len(item.Keys)+len(subitem.Keys))
- copy(keys, item.Keys)
- copy(keys[len(item.Keys):], subitem.Keys)
-
- // Add it to the frontier so that we can recurse
- frontier = append(frontier, &ast.ObjectItem{
- Keys: keys,
- Assign: item.Assign,
- Val: subitem.Val,
- LeadComment: item.LeadComment,
- LineComment: item.LineComment,
- })
- }
-
- return items, frontier
-}
diff --git a/vendor/github.com/hashicorp/hcl/json/parser/parser.go b/vendor/github.com/hashicorp/hcl/json/parser/parser.go
deleted file mode 100644
index 125a5f0..0000000
--- a/vendor/github.com/hashicorp/hcl/json/parser/parser.go
+++ /dev/null
@@ -1,313 +0,0 @@
-package parser
-
-import (
- "errors"
- "fmt"
-
- "github.com/hashicorp/hcl/hcl/ast"
- hcltoken "github.com/hashicorp/hcl/hcl/token"
- "github.com/hashicorp/hcl/json/scanner"
- "github.com/hashicorp/hcl/json/token"
-)
-
-type Parser struct {
- sc *scanner.Scanner
-
- // Last read token
- tok token.Token
- commaPrev token.Token
-
- enableTrace bool
- indent int
- n int // buffer size (max = 1)
-}
-
-func newParser(src []byte) *Parser {
- return &Parser{
- sc: scanner.New(src),
- }
-}
-
-// Parse returns the fully parsed source and returns the abstract syntax tree.
-func Parse(src []byte) (*ast.File, error) {
- p := newParser(src)
- return p.Parse()
-}
-
-var errEofToken = errors.New("EOF token found")
-
-// Parse returns the fully parsed source and returns the abstract syntax tree.
-func (p *Parser) Parse() (*ast.File, error) {
- f := &ast.File{}
- var err, scerr error
- p.sc.Error = func(pos token.Pos, msg string) {
- scerr = fmt.Errorf("%s: %s", pos, msg)
- }
-
- // The root must be an object in JSON
- object, err := p.object()
- if scerr != nil {
- return nil, scerr
- }
- if err != nil {
- return nil, err
- }
-
- // We make our final node an object list so it is more HCL compatible
- f.Node = object.List
-
- // Flatten it, which finds patterns and turns them into more HCL-like
- // AST trees.
- flattenObjects(f.Node)
-
- return f, nil
-}
-
-func (p *Parser) objectList() (*ast.ObjectList, error) {
- defer un(trace(p, "ParseObjectList"))
- node := &ast.ObjectList{}
-
- for {
- n, err := p.objectItem()
- if err == errEofToken {
- break // we are finished
- }
-
- // we don't return a nil node, because might want to use already
- // collected items.
- if err != nil {
- return node, err
- }
-
- node.Add(n)
-
- // Check for a followup comma. If it isn't a comma, then we're done
- if tok := p.scan(); tok.Type != token.COMMA {
- break
- }
- }
-
- return node, nil
-}
-
-// objectItem parses a single object item
-func (p *Parser) objectItem() (*ast.ObjectItem, error) {
- defer un(trace(p, "ParseObjectItem"))
-
- keys, err := p.objectKey()
- if err != nil {
- return nil, err
- }
-
- o := &ast.ObjectItem{
- Keys: keys,
- }
-
- switch p.tok.Type {
- case token.COLON:
- pos := p.tok.Pos
- o.Assign = hcltoken.Pos{
- Filename: pos.Filename,
- Offset: pos.Offset,
- Line: pos.Line,
- Column: pos.Column,
- }
-
- o.Val, err = p.objectValue()
- if err != nil {
- return nil, err
- }
- }
-
- return o, nil
-}
-
-// objectKey parses an object key and returns a ObjectKey AST
-func (p *Parser) objectKey() ([]*ast.ObjectKey, error) {
- keyCount := 0
- keys := make([]*ast.ObjectKey, 0)
-
- for {
- tok := p.scan()
- switch tok.Type {
- case token.EOF:
- return nil, errEofToken
- case token.STRING:
- keyCount++
- keys = append(keys, &ast.ObjectKey{
- Token: p.tok.HCLToken(),
- })
- case token.COLON:
- // If we have a zero keycount it means that we never got
- // an object key, i.e. `{ :`. This is a syntax error.
- if keyCount == 0 {
- return nil, fmt.Errorf("expected: STRING got: %s", p.tok.Type)
- }
-
- // Done
- return keys, nil
- case token.ILLEGAL:
- return nil, errors.New("illegal")
- default:
- return nil, fmt.Errorf("expected: STRING got: %s", p.tok.Type)
- }
- }
-}
-
-// object parses any type of object, such as number, bool, string, object or
-// list.
-func (p *Parser) objectValue() (ast.Node, error) {
- defer un(trace(p, "ParseObjectValue"))
- tok := p.scan()
-
- switch tok.Type {
- case token.NUMBER, token.FLOAT, token.BOOL, token.NULL, token.STRING:
- return p.literalType()
- case token.LBRACE:
- return p.objectType()
- case token.LBRACK:
- return p.listType()
- case token.EOF:
- return nil, errEofToken
- }
-
- return nil, fmt.Errorf("Expected object value, got unknown token: %+v", tok)
-}
-
-// object parses any type of object, such as number, bool, string, object or
-// list.
-func (p *Parser) object() (*ast.ObjectType, error) {
- defer un(trace(p, "ParseType"))
- tok := p.scan()
-
- switch tok.Type {
- case token.LBRACE:
- return p.objectType()
- case token.EOF:
- return nil, errEofToken
- }
-
- return nil, fmt.Errorf("Expected object, got unknown token: %+v", tok)
-}
-
-// objectType parses an object type and returns a ObjectType AST
-func (p *Parser) objectType() (*ast.ObjectType, error) {
- defer un(trace(p, "ParseObjectType"))
-
- // we assume that the currently scanned token is a LBRACE
- o := &ast.ObjectType{}
-
- l, err := p.objectList()
-
- // if we hit RBRACE, we are good to go (means we parsed all Items), if it's
- // not a RBRACE, it's an syntax error and we just return it.
- if err != nil && p.tok.Type != token.RBRACE {
- return nil, err
- }
-
- o.List = l
- return o, nil
-}
-
-// listType parses a list type and returns a ListType AST
-func (p *Parser) listType() (*ast.ListType, error) {
- defer un(trace(p, "ParseListType"))
-
- // we assume that the currently scanned token is a LBRACK
- l := &ast.ListType{}
-
- for {
- tok := p.scan()
- switch tok.Type {
- case token.NUMBER, token.FLOAT, token.STRING:
- node, err := p.literalType()
- if err != nil {
- return nil, err
- }
-
- l.Add(node)
- case token.COMMA:
- continue
- case token.LBRACE:
- node, err := p.objectType()
- if err != nil {
- return nil, err
- }
-
- l.Add(node)
- case token.BOOL:
- // TODO(arslan) should we support? not supported by HCL yet
- case token.LBRACK:
- // TODO(arslan) should we support nested lists? Even though it's
- // written in README of HCL, it's not a part of the grammar
- // (not defined in parse.y)
- case token.RBRACK:
- // finished
- return l, nil
- default:
- return nil, fmt.Errorf("unexpected token while parsing list: %s", tok.Type)
- }
-
- }
-}
-
-// literalType parses a literal type and returns a LiteralType AST
-func (p *Parser) literalType() (*ast.LiteralType, error) {
- defer un(trace(p, "ParseLiteral"))
-
- return &ast.LiteralType{
- Token: p.tok.HCLToken(),
- }, nil
-}
-
-// scan returns the next token from the underlying scanner. If a token has
-// been unscanned then read that instead.
-func (p *Parser) scan() token.Token {
- // If we have a token on the buffer, then return it.
- if p.n != 0 {
- p.n = 0
- return p.tok
- }
-
- p.tok = p.sc.Scan()
- return p.tok
-}
-
-// unscan pushes the previously read token back onto the buffer.
-func (p *Parser) unscan() {
- p.n = 1
-}
-
-// ----------------------------------------------------------------------------
-// Parsing support
-
-func (p *Parser) printTrace(a ...interface{}) {
- if !p.enableTrace {
- return
- }
-
- const dots = ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
- const n = len(dots)
- fmt.Printf("%5d:%3d: ", p.tok.Pos.Line, p.tok.Pos.Column)
-
- i := 2 * p.indent
- for i > n {
- fmt.Print(dots)
- i -= n
- }
- // i <= n
- fmt.Print(dots[0:i])
- fmt.Println(a...)
-}
-
-func trace(p *Parser, msg string) *Parser {
- p.printTrace(msg, "(")
- p.indent++
- return p
-}
-
-// Usage pattern: defer un(trace(p, "..."))
-func un(p *Parser) {
- p.indent--
- p.printTrace(")")
-}
diff --git a/vendor/github.com/hashicorp/hcl/json/scanner/scanner.go b/vendor/github.com/hashicorp/hcl/json/scanner/scanner.go
deleted file mode 100644
index fe3f0f0..0000000
--- a/vendor/github.com/hashicorp/hcl/json/scanner/scanner.go
+++ /dev/null
@@ -1,451 +0,0 @@
-package scanner
-
-import (
- "bytes"
- "fmt"
- "os"
- "unicode"
- "unicode/utf8"
-
- "github.com/hashicorp/hcl/json/token"
-)
-
-// eof represents a marker rune for the end of the reader.
-const eof = rune(0)
-
-// Scanner defines a lexical scanner
-type Scanner struct {
- buf *bytes.Buffer // Source buffer for advancing and scanning
- src []byte // Source buffer for immutable access
-
- // Source Position
- srcPos token.Pos // current position
- prevPos token.Pos // previous position, used for peek() method
-
- lastCharLen int // length of last character in bytes
- lastLineLen int // length of last line in characters (for correct column reporting)
-
- tokStart int // token text start position
- tokEnd int // token text end position
-
- // Error is called for each error encountered. If no Error
- // function is set, the error is reported to os.Stderr.
- Error func(pos token.Pos, msg string)
-
- // ErrorCount is incremented by one for each error encountered.
- ErrorCount int
-
- // tokPos is the start position of most recently scanned token; set by
- // Scan. The Filename field is always left untouched by the Scanner. If
- // an error is reported (via Error) and Position is invalid, the scanner is
- // not inside a token.
- tokPos token.Pos
-}
-
-// New creates and initializes a new instance of Scanner using src as
-// its source content.
-func New(src []byte) *Scanner {
- // even though we accept a src, we read from a io.Reader compatible type
- // (*bytes.Buffer). So in the future we might easily change it to streaming
- // read.
- b := bytes.NewBuffer(src)
- s := &Scanner{
- buf: b,
- src: src,
- }
-
- // srcPosition always starts with 1
- s.srcPos.Line = 1
- return s
-}
-
-// next reads the next rune from the bufferred reader. Returns the rune(0) if
-// an error occurs (or io.EOF is returned).
-func (s *Scanner) next() rune {
- ch, size, err := s.buf.ReadRune()
- if err != nil {
- // advance for error reporting
- s.srcPos.Column++
- s.srcPos.Offset += size
- s.lastCharLen = size
- return eof
- }
-
- if ch == utf8.RuneError && size == 1 {
- s.srcPos.Column++
- s.srcPos.Offset += size
- s.lastCharLen = size
- s.err("illegal UTF-8 encoding")
- return ch
- }
-
- // remember last position
- s.prevPos = s.srcPos
-
- s.srcPos.Column++
- s.lastCharLen = size
- s.srcPos.Offset += size
-
- if ch == '\n' {
- s.srcPos.Line++
- s.lastLineLen = s.srcPos.Column
- s.srcPos.Column = 0
- }
-
- // debug
- // fmt.Printf("ch: %q, offset:column: %d:%d\n", ch, s.srcPos.Offset, s.srcPos.Column)
- return ch
-}
-
-// unread unreads the previous read Rune and updates the source position
-func (s *Scanner) unread() {
- if err := s.buf.UnreadRune(); err != nil {
- panic(err) // this is user fault, we should catch it
- }
- s.srcPos = s.prevPos // put back last position
-}
-
-// peek returns the next rune without advancing the reader.
-func (s *Scanner) peek() rune {
- peek, _, err := s.buf.ReadRune()
- if err != nil {
- return eof
- }
-
- s.buf.UnreadRune()
- return peek
-}
-
-// Scan scans the next token and returns the token.
-func (s *Scanner) Scan() token.Token {
- ch := s.next()
-
- // skip white space
- for isWhitespace(ch) {
- ch = s.next()
- }
-
- var tok token.Type
-
- // token text markings
- s.tokStart = s.srcPos.Offset - s.lastCharLen
-
- // token position, initial next() is moving the offset by one(size of rune
- // actually), though we are interested with the starting point
- s.tokPos.Offset = s.srcPos.Offset - s.lastCharLen
- if s.srcPos.Column > 0 {
- // common case: last character was not a '\n'
- s.tokPos.Line = s.srcPos.Line
- s.tokPos.Column = s.srcPos.Column
- } else {
- // last character was a '\n'
- // (we cannot be at the beginning of the source
- // since we have called next() at least once)
- s.tokPos.Line = s.srcPos.Line - 1
- s.tokPos.Column = s.lastLineLen
- }
-
- switch {
- case isLetter(ch):
- lit := s.scanIdentifier()
- if lit == "true" || lit == "false" {
- tok = token.BOOL
- } else if lit == "null" {
- tok = token.NULL
- } else {
- s.err("illegal char")
- }
- case isDecimal(ch):
- tok = s.scanNumber(ch)
- default:
- switch ch {
- case eof:
- tok = token.EOF
- case '"':
- tok = token.STRING
- s.scanString()
- case '.':
- tok = token.PERIOD
- ch = s.peek()
- if isDecimal(ch) {
- tok = token.FLOAT
- ch = s.scanMantissa(ch)
- ch = s.scanExponent(ch)
- }
- case '[':
- tok = token.LBRACK
- case ']':
- tok = token.RBRACK
- case '{':
- tok = token.LBRACE
- case '}':
- tok = token.RBRACE
- case ',':
- tok = token.COMMA
- case ':':
- tok = token.COLON
- case '-':
- if isDecimal(s.peek()) {
- ch := s.next()
- tok = s.scanNumber(ch)
- } else {
- s.err("illegal char")
- }
- default:
- s.err("illegal char: " + string(ch))
- }
- }
-
- // finish token ending
- s.tokEnd = s.srcPos.Offset
-
- // create token literal
- var tokenText string
- if s.tokStart >= 0 {
- tokenText = string(s.src[s.tokStart:s.tokEnd])
- }
- s.tokStart = s.tokEnd // ensure idempotency of tokenText() call
-
- return token.Token{
- Type: tok,
- Pos: s.tokPos,
- Text: tokenText,
- }
-}
-
-// scanNumber scans a HCL number definition starting with the given rune
-func (s *Scanner) scanNumber(ch rune) token.Type {
- zero := ch == '0'
- pos := s.srcPos
-
- s.scanMantissa(ch)
- ch = s.next() // seek forward
- if ch == 'e' || ch == 'E' {
- ch = s.scanExponent(ch)
- return token.FLOAT
- }
-
- if ch == '.' {
- ch = s.scanFraction(ch)
- if ch == 'e' || ch == 'E' {
- ch = s.next()
- ch = s.scanExponent(ch)
- }
- return token.FLOAT
- }
-
- if ch != eof {
- s.unread()
- }
-
- // If we have a larger number and this is zero, error
- if zero && pos != s.srcPos {
- s.err("numbers cannot start with 0")
- }
-
- return token.NUMBER
-}
-
-// scanMantissa scans the mantissa beginning from the rune. It returns the next
-// non decimal rune. It's used to determine wheter it's a fraction or exponent.
-func (s *Scanner) scanMantissa(ch rune) rune {
- scanned := false
- for isDecimal(ch) {
- ch = s.next()
- scanned = true
- }
-
- if scanned && ch != eof {
- s.unread()
- }
- return ch
-}
-
-// scanFraction scans the fraction after the '.' rune
-func (s *Scanner) scanFraction(ch rune) rune {
- if ch == '.' {
- ch = s.peek() // we peek just to see if we can move forward
- ch = s.scanMantissa(ch)
- }
- return ch
-}
-
-// scanExponent scans the remaining parts of an exponent after the 'e' or 'E'
-// rune.
-func (s *Scanner) scanExponent(ch rune) rune {
- if ch == 'e' || ch == 'E' {
- ch = s.next()
- if ch == '-' || ch == '+' {
- ch = s.next()
- }
- ch = s.scanMantissa(ch)
- }
- return ch
-}
-
-// scanString scans a quoted string
-func (s *Scanner) scanString() {
- braces := 0
- for {
- // '"' opening already consumed
- // read character after quote
- ch := s.next()
-
- if ch == '\n' || ch < 0 || ch == eof {
- s.err("literal not terminated")
- return
- }
-
- if ch == '"' {
- break
- }
-
- // If we're going into a ${} then we can ignore quotes for awhile
- if braces == 0 && ch == '$' && s.peek() == '{' {
- braces++
- s.next()
- } else if braces > 0 && ch == '{' {
- braces++
- }
- if braces > 0 && ch == '}' {
- braces--
- }
-
- if ch == '\\' {
- s.scanEscape()
- }
- }
-
- return
-}
-
-// scanEscape scans an escape sequence
-func (s *Scanner) scanEscape() rune {
- // http://en.cppreference.com/w/cpp/language/escape
- ch := s.next() // read character after '/'
- switch ch {
- case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '"':
- // nothing to do
- case '0', '1', '2', '3', '4', '5', '6', '7':
- // octal notation
- ch = s.scanDigits(ch, 8, 3)
- case 'x':
- // hexademical notation
- ch = s.scanDigits(s.next(), 16, 2)
- case 'u':
- // universal character name
- ch = s.scanDigits(s.next(), 16, 4)
- case 'U':
- // universal character name
- ch = s.scanDigits(s.next(), 16, 8)
- default:
- s.err("illegal char escape")
- }
- return ch
-}
-
-// scanDigits scans a rune with the given base for n times. For example an
-// octal notation \184 would yield in scanDigits(ch, 8, 3)
-func (s *Scanner) scanDigits(ch rune, base, n int) rune {
- for n > 0 && digitVal(ch) < base {
- ch = s.next()
- n--
- }
- if n > 0 {
- s.err("illegal char escape")
- }
-
- // we scanned all digits, put the last non digit char back
- s.unread()
- return ch
-}
-
-// scanIdentifier scans an identifier and returns the literal string
-func (s *Scanner) scanIdentifier() string {
- offs := s.srcPos.Offset - s.lastCharLen
- ch := s.next()
- for isLetter(ch) || isDigit(ch) || ch == '-' {
- ch = s.next()
- }
-
- if ch != eof {
- s.unread() // we got identifier, put back latest char
- }
-
- return string(s.src[offs:s.srcPos.Offset])
-}
-
-// recentPosition returns the position of the character immediately after the
-// character or token returned by the last call to Scan.
-func (s *Scanner) recentPosition() (pos token.Pos) {
- pos.Offset = s.srcPos.Offset - s.lastCharLen
- switch {
- case s.srcPos.Column > 0:
- // common case: last character was not a '\n'
- pos.Line = s.srcPos.Line
- pos.Column = s.srcPos.Column
- case s.lastLineLen > 0:
- // last character was a '\n'
- // (we cannot be at the beginning of the source
- // since we have called next() at least once)
- pos.Line = s.srcPos.Line - 1
- pos.Column = s.lastLineLen
- default:
- // at the beginning of the source
- pos.Line = 1
- pos.Column = 1
- }
- return
-}
-
-// err prints the error of any scanning to s.Error function. If the function is
-// not defined, by default it prints them to os.Stderr
-func (s *Scanner) err(msg string) {
- s.ErrorCount++
- pos := s.recentPosition()
-
- if s.Error != nil {
- s.Error(pos, msg)
- return
- }
-
- fmt.Fprintf(os.Stderr, "%s: %s\n", pos, msg)
-}
-
-// isHexadecimal returns true if the given rune is a letter
-func isLetter(ch rune) bool {
- return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= 0x80 && unicode.IsLetter(ch)
-}
-
-// isHexadecimal returns true if the given rune is a decimal digit
-func isDigit(ch rune) bool {
- return '0' <= ch && ch <= '9' || ch >= 0x80 && unicode.IsDigit(ch)
-}
-
-// isHexadecimal returns true if the given rune is a decimal number
-func isDecimal(ch rune) bool {
- return '0' <= ch && ch <= '9'
-}
-
-// isHexadecimal returns true if the given rune is an hexadecimal number
-func isHexadecimal(ch rune) bool {
- return '0' <= ch && ch <= '9' || 'a' <= ch && ch <= 'f' || 'A' <= ch && ch <= 'F'
-}
-
-// isWhitespace returns true if the rune is a space, tab, newline or carriage return
-func isWhitespace(ch rune) bool {
- return ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'
-}
-
-// digitVal returns the integer value of a given octal,decimal or hexadecimal rune
-func digitVal(ch rune) int {
- switch {
- case '0' <= ch && ch <= '9':
- return int(ch - '0')
- case 'a' <= ch && ch <= 'f':
- return int(ch - 'a' + 10)
- case 'A' <= ch && ch <= 'F':
- return int(ch - 'A' + 10)
- }
- return 16 // larger than any legal digit val
-}
diff --git a/vendor/github.com/hashicorp/hcl/json/token/position.go b/vendor/github.com/hashicorp/hcl/json/token/position.go
deleted file mode 100644
index 59c1bb7..0000000
--- a/vendor/github.com/hashicorp/hcl/json/token/position.go
+++ /dev/null
@@ -1,46 +0,0 @@
-package token
-
-import "fmt"
-
-// Pos describes an arbitrary source position
-// including the file, line, and column location.
-// A Position is valid if the line number is > 0.
-type Pos struct {
- Filename string // filename, if any
- Offset int // offset, starting at 0
- Line int // line number, starting at 1
- Column int // column number, starting at 1 (character count)
-}
-
-// IsValid returns true if the position is valid.
-func (p *Pos) IsValid() bool { return p.Line > 0 }
-
-// String returns a string in one of several forms:
-//
-// file:line:column valid position with file name
-// line:column valid position without file name
-// file invalid position with file name
-// - invalid position without file name
-func (p Pos) String() string {
- s := p.Filename
- if p.IsValid() {
- if s != "" {
- s += ":"
- }
- s += fmt.Sprintf("%d:%d", p.Line, p.Column)
- }
- if s == "" {
- s = "-"
- }
- return s
-}
-
-// Before reports whether the position p is before u.
-func (p Pos) Before(u Pos) bool {
- return u.Offset > p.Offset || u.Line > p.Line
-}
-
-// After reports whether the position p is after u.
-func (p Pos) After(u Pos) bool {
- return u.Offset < p.Offset || u.Line < p.Line
-}
diff --git a/vendor/github.com/hashicorp/hcl/json/token/token.go b/vendor/github.com/hashicorp/hcl/json/token/token.go
deleted file mode 100644
index 95a0c3e..0000000
--- a/vendor/github.com/hashicorp/hcl/json/token/token.go
+++ /dev/null
@@ -1,118 +0,0 @@
-package token
-
-import (
- "fmt"
- "strconv"
-
- hcltoken "github.com/hashicorp/hcl/hcl/token"
-)
-
-// Token defines a single HCL token which can be obtained via the Scanner
-type Token struct {
- Type Type
- Pos Pos
- Text string
-}
-
-// Type is the set of lexical tokens of the HCL (HashiCorp Configuration Language)
-type Type int
-
-const (
- // Special tokens
- ILLEGAL Type = iota
- EOF
-
- identifier_beg
- literal_beg
- NUMBER // 12345
- FLOAT // 123.45
- BOOL // true,false
- STRING // "abc"
- NULL // null
- literal_end
- identifier_end
-
- operator_beg
- LBRACK // [
- LBRACE // {
- COMMA // ,
- PERIOD // .
- COLON // :
-
- RBRACK // ]
- RBRACE // }
-
- operator_end
-)
-
-var tokens = [...]string{
- ILLEGAL: "ILLEGAL",
-
- EOF: "EOF",
-
- NUMBER: "NUMBER",
- FLOAT: "FLOAT",
- BOOL: "BOOL",
- STRING: "STRING",
- NULL: "NULL",
-
- LBRACK: "LBRACK",
- LBRACE: "LBRACE",
- COMMA: "COMMA",
- PERIOD: "PERIOD",
- COLON: "COLON",
-
- RBRACK: "RBRACK",
- RBRACE: "RBRACE",
-}
-
-// String returns the string corresponding to the token tok.
-func (t Type) String() string {
- s := ""
- if 0 <= t && t < Type(len(tokens)) {
- s = tokens[t]
- }
- if s == "" {
- s = "token(" + strconv.Itoa(int(t)) + ")"
- }
- return s
-}
-
-// IsIdentifier returns true for tokens corresponding to identifiers and basic
-// type literals; it returns false otherwise.
-func (t Type) IsIdentifier() bool { return identifier_beg < t && t < identifier_end }
-
-// IsLiteral returns true for tokens corresponding to basic type literals; it
-// returns false otherwise.
-func (t Type) IsLiteral() bool { return literal_beg < t && t < literal_end }
-
-// IsOperator returns true for tokens corresponding to operators and
-// delimiters; it returns false otherwise.
-func (t Type) IsOperator() bool { return operator_beg < t && t < operator_end }
-
-// String returns the token's literal text. Note that this is only
-// applicable for certain token types, such as token.IDENT,
-// token.STRING, etc..
-func (t Token) String() string {
- return fmt.Sprintf("%s %s %s", t.Pos.String(), t.Type.String(), t.Text)
-}
-
-// HCLToken converts this token to an HCL token.
-//
-// The token type must be a literal type or this will panic.
-func (t Token) HCLToken() hcltoken.Token {
- switch t.Type {
- case BOOL:
- return hcltoken.Token{Type: hcltoken.BOOL, Text: t.Text}
- case FLOAT:
- return hcltoken.Token{Type: hcltoken.FLOAT, Text: t.Text}
- case NULL:
- return hcltoken.Token{Type: hcltoken.STRING, Text: ""}
- case NUMBER:
- return hcltoken.Token{Type: hcltoken.NUMBER, Text: t.Text}
- case STRING:
- return hcltoken.Token{Type: hcltoken.STRING, Text: t.Text, JSON: true}
- default:
- panic(fmt.Sprintf("unimplemented HCLToken for type: %s", t.Type))
- }
-}
diff --git a/vendor/github.com/hashicorp/hcl/lex.go b/vendor/github.com/hashicorp/hcl/lex.go
deleted file mode 100644
index d9993c2..0000000
--- a/vendor/github.com/hashicorp/hcl/lex.go
+++ /dev/null
@@ -1,38 +0,0 @@
-package hcl
-
-import (
- "unicode"
- "unicode/utf8"
-)
-
-type lexModeValue byte
-
-const (
- lexModeUnknown lexModeValue = iota
- lexModeHcl
- lexModeJson
-)
-
-// lexMode returns whether we're going to be parsing in JSON
-// mode or HCL mode.
-func lexMode(v []byte) lexModeValue {
- var (
- r rune
- w int
- offset int
- )
-
- for {
- r, w = utf8.DecodeRune(v[offset:])
- offset += w
- if unicode.IsSpace(r) {
- continue
- }
- if r == '{' {
- return lexModeJson
- }
- break
- }
-
- return lexModeHcl
-}
diff --git a/vendor/github.com/hashicorp/hcl/parse.go b/vendor/github.com/hashicorp/hcl/parse.go
deleted file mode 100644
index 1fca53c..0000000
--- a/vendor/github.com/hashicorp/hcl/parse.go
+++ /dev/null
@@ -1,39 +0,0 @@
-package hcl
-
-import (
- "fmt"
-
- "github.com/hashicorp/hcl/hcl/ast"
- hclParser "github.com/hashicorp/hcl/hcl/parser"
- jsonParser "github.com/hashicorp/hcl/json/parser"
-)
-
-// ParseBytes accepts as input byte slice and returns ast tree.
-//
-// Input can be either JSON or HCL
-func ParseBytes(in []byte) (*ast.File, error) {
- return parse(in)
-}
-
-// ParseString accepts input as a string and returns ast tree.
-func ParseString(input string) (*ast.File, error) {
- return parse([]byte(input))
-}
-
-func parse(in []byte) (*ast.File, error) {
- switch lexMode(in) {
- case lexModeHcl:
- return hclParser.Parse(in)
- case lexModeJson:
- return jsonParser.Parse(in)
- }
-
- return nil, fmt.Errorf("unknown config format")
-}
-
-// Parse parses the given input and returns the root object.
-//
-// The input format can be either HCL or JSON.
-func Parse(input string) (*ast.File, error) {
- return parse([]byte(input))
-}