aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/internal
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/crypto/internal')
-rw-r--r--vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go264
-rw-r--r--vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go16
-rw-r--r--vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go30
-rw-r--r--vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s283
-rw-r--r--vendor/golang.org/x/crypto/internal/chacha20/xor.go43
-rw-r--r--vendor/golang.org/x/crypto/internal/subtle/aliasing.go32
6 files changed, 0 insertions, 668 deletions
diff --git a/vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go b/vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go
deleted file mode 100644
index 6570847..0000000
--- a/vendor/golang.org/x/crypto/internal/chacha20/chacha_generic.go
+++ /dev/null
@@ -1,264 +0,0 @@
-// Copyright 2016 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package ChaCha20 implements the core ChaCha20 function as specified
-// in https://tools.ietf.org/html/rfc7539#section-2.3.
-package chacha20
-
-import (
- "crypto/cipher"
- "encoding/binary"
-
- "golang.org/x/crypto/internal/subtle"
-)
-
-// assert that *Cipher implements cipher.Stream
-var _ cipher.Stream = (*Cipher)(nil)
-
-// Cipher is a stateful instance of ChaCha20 using a particular key
-// and nonce. A *Cipher implements the cipher.Stream interface.
-type Cipher struct {
- key [8]uint32
- counter uint32 // incremented after each block
- nonce [3]uint32
- buf [bufSize]byte // buffer for unused keystream bytes
- len int // number of unused keystream bytes at end of buf
-}
-
-// New creates a new ChaCha20 stream cipher with the given key and nonce.
-// The initial counter value is set to 0.
-func New(key [8]uint32, nonce [3]uint32) *Cipher {
- return &Cipher{key: key, nonce: nonce}
-}
-
-// ChaCha20 constants spelling "expand 32-byte k"
-const (
- j0 uint32 = 0x61707865
- j1 uint32 = 0x3320646e
- j2 uint32 = 0x79622d32
- j3 uint32 = 0x6b206574
-)
-
-func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
- a += b
- d ^= a
- d = (d << 16) | (d >> 16)
- c += d
- b ^= c
- b = (b << 12) | (b >> 20)
- a += b
- d ^= a
- d = (d << 8) | (d >> 24)
- c += d
- b ^= c
- b = (b << 7) | (b >> 25)
- return a, b, c, d
-}
-
-// XORKeyStream XORs each byte in the given slice with a byte from the
-// cipher's key stream. Dst and src must overlap entirely or not at all.
-//
-// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
-// to pass a dst bigger than src, and in that case, XORKeyStream will
-// only update dst[:len(src)] and will not touch the rest of dst.
-//
-// Multiple calls to XORKeyStream behave as if the concatenation of
-// the src buffers was passed in a single run. That is, Cipher
-// maintains state and does not reset at each XORKeyStream call.
-func (s *Cipher) XORKeyStream(dst, src []byte) {
- if len(dst) < len(src) {
- panic("chacha20: output smaller than input")
- }
- if subtle.InexactOverlap(dst[:len(src)], src) {
- panic("chacha20: invalid buffer overlap")
- }
-
- // xor src with buffered keystream first
- if s.len != 0 {
- buf := s.buf[len(s.buf)-s.len:]
- if len(src) < len(buf) {
- buf = buf[:len(src)]
- }
- td, ts := dst[:len(buf)], src[:len(buf)] // BCE hint
- for i, b := range buf {
- td[i] = ts[i] ^ b
- }
- s.len -= len(buf)
- if s.len != 0 {
- return
- }
- s.buf = [len(s.buf)]byte{} // zero the empty buffer
- src = src[len(buf):]
- dst = dst[len(buf):]
- }
-
- if len(src) == 0 {
- return
- }
- if haveAsm {
- if uint64(len(src))+uint64(s.counter)*64 > (1<<38)-64 {
- panic("chacha20: counter overflow")
- }
- s.xorKeyStreamAsm(dst, src)
- return
- }
-
- // set up a 64-byte buffer to pad out the final block if needed
- // (hoisted out of the main loop to avoid spills)
- rem := len(src) % 64 // length of final block
- fin := len(src) - rem // index of final block
- if rem > 0 {
- copy(s.buf[len(s.buf)-64:], src[fin:])
- }
-
- // pre-calculate most of the first round
- s1, s5, s9, s13 := quarterRound(j1, s.key[1], s.key[5], s.nonce[0])
- s2, s6, s10, s14 := quarterRound(j2, s.key[2], s.key[6], s.nonce[1])
- s3, s7, s11, s15 := quarterRound(j3, s.key[3], s.key[7], s.nonce[2])
-
- n := len(src)
- src, dst = src[:n:n], dst[:n:n] // BCE hint
- for i := 0; i < n; i += 64 {
- // calculate the remainder of the first round
- s0, s4, s8, s12 := quarterRound(j0, s.key[0], s.key[4], s.counter)
-
- // execute the second round
- x0, x5, x10, x15 := quarterRound(s0, s5, s10, s15)
- x1, x6, x11, x12 := quarterRound(s1, s6, s11, s12)
- x2, x7, x8, x13 := quarterRound(s2, s7, s8, s13)
- x3, x4, x9, x14 := quarterRound(s3, s4, s9, s14)
-
- // execute the remaining 18 rounds
- for i := 0; i < 9; i++ {
- x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
- x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
- x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
- x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
-
- x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
- x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
- x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
- x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
- }
-
- x0 += j0
- x1 += j1
- x2 += j2
- x3 += j3
-
- x4 += s.key[0]
- x5 += s.key[1]
- x6 += s.key[2]
- x7 += s.key[3]
- x8 += s.key[4]
- x9 += s.key[5]
- x10 += s.key[6]
- x11 += s.key[7]
-
- x12 += s.counter
- x13 += s.nonce[0]
- x14 += s.nonce[1]
- x15 += s.nonce[2]
-
- // increment the counter
- s.counter += 1
- if s.counter == 0 {
- panic("chacha20: counter overflow")
- }
-
- // pad to 64 bytes if needed
- in, out := src[i:], dst[i:]
- if i == fin {
- // src[fin:] has already been copied into s.buf before
- // the main loop
- in, out = s.buf[len(s.buf)-64:], s.buf[len(s.buf)-64:]
- }
- in, out = in[:64], out[:64] // BCE hint
-
- // XOR the key stream with the source and write out the result
- xor(out[0:], in[0:], x0)
- xor(out[4:], in[4:], x1)
- xor(out[8:], in[8:], x2)
- xor(out[12:], in[12:], x3)
- xor(out[16:], in[16:], x4)
- xor(out[20:], in[20:], x5)
- xor(out[24:], in[24:], x6)
- xor(out[28:], in[28:], x7)
- xor(out[32:], in[32:], x8)
- xor(out[36:], in[36:], x9)
- xor(out[40:], in[40:], x10)
- xor(out[44:], in[44:], x11)
- xor(out[48:], in[48:], x12)
- xor(out[52:], in[52:], x13)
- xor(out[56:], in[56:], x14)
- xor(out[60:], in[60:], x15)
- }
- // copy any trailing bytes out of the buffer and into dst
- if rem != 0 {
- s.len = 64 - rem
- copy(dst[fin:], s.buf[len(s.buf)-64:])
- }
-}
-
-// Advance discards bytes in the key stream until the next 64 byte block
-// boundary is reached and updates the counter accordingly. If the key
-// stream is already at a block boundary no bytes will be discarded and
-// the counter will be unchanged.
-func (s *Cipher) Advance() {
- s.len -= s.len % 64
- if s.len == 0 {
- s.buf = [len(s.buf)]byte{}
- }
-}
-
-// XORKeyStream crypts bytes from in to out using the given key and counters.
-// In and out must overlap entirely or not at all. Counter contains the raw
-// ChaCha20 counter bytes (i.e. block counter followed by nonce).
-func XORKeyStream(out, in []byte, counter *[16]byte, key *[32]byte) {
- s := Cipher{
- key: [8]uint32{
- binary.LittleEndian.Uint32(key[0:4]),
- binary.LittleEndian.Uint32(key[4:8]),
- binary.LittleEndian.Uint32(key[8:12]),
- binary.LittleEndian.Uint32(key[12:16]),
- binary.LittleEndian.Uint32(key[16:20]),
- binary.LittleEndian.Uint32(key[20:24]),
- binary.LittleEndian.Uint32(key[24:28]),
- binary.LittleEndian.Uint32(key[28:32]),
- },
- nonce: [3]uint32{
- binary.LittleEndian.Uint32(counter[4:8]),
- binary.LittleEndian.Uint32(counter[8:12]),
- binary.LittleEndian.Uint32(counter[12:16]),
- },
- counter: binary.LittleEndian.Uint32(counter[0:4]),
- }
- s.XORKeyStream(out, in)
-}
-
-// HChaCha20 uses the ChaCha20 core to generate a derived key from a key and a
-// nonce. It should only be used as part of the XChaCha20 construction.
-func HChaCha20(key *[8]uint32, nonce *[4]uint32) [8]uint32 {
- x0, x1, x2, x3 := j0, j1, j2, j3
- x4, x5, x6, x7 := key[0], key[1], key[2], key[3]
- x8, x9, x10, x11 := key[4], key[5], key[6], key[7]
- x12, x13, x14, x15 := nonce[0], nonce[1], nonce[2], nonce[3]
-
- for i := 0; i < 10; i++ {
- x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
- x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
- x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
- x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
-
- x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
- x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
- x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
- x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
- }
-
- var out [8]uint32
- out[0], out[1], out[2], out[3] = x0, x1, x2, x3
- out[4], out[5], out[6], out[7] = x12, x13, x14, x15
- return out
-}
diff --git a/vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go b/vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go
deleted file mode 100644
index 91520d1..0000000
--- a/vendor/golang.org/x/crypto/internal/chacha20/chacha_noasm.go
+++ /dev/null
@@ -1,16 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !s390x gccgo appengine
-
-package chacha20
-
-const (
- bufSize = 64
- haveAsm = false
-)
-
-func (*Cipher) xorKeyStreamAsm(dst, src []byte) {
- panic("not implemented")
-}
diff --git a/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go b/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go
deleted file mode 100644
index 0c1c671..0000000
--- a/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.go
+++ /dev/null
@@ -1,30 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build s390x,!gccgo,!appengine
-
-package chacha20
-
-var haveAsm = hasVectorFacility()
-
-const bufSize = 256
-
-// hasVectorFacility reports whether the machine supports the vector
-// facility (vx).
-// Implementation in asm_s390x.s.
-func hasVectorFacility() bool
-
-// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
-// be called when the vector facility is available.
-// Implementation in asm_s390x.s.
-//go:noescape
-func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
-
-func (c *Cipher) xorKeyStreamAsm(dst, src []byte) {
- xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter, &c.buf, &c.len)
-}
-
-// EXRL targets, DO NOT CALL!
-func mvcSrcToBuf()
-func mvcBufToDst()
diff --git a/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s b/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s
deleted file mode 100644
index 98427c5..0000000
--- a/vendor/golang.org/x/crypto/internal/chacha20/chacha_s390x.s
+++ /dev/null
@@ -1,283 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build s390x,!gccgo,!appengine
-
-#include "go_asm.h"
-#include "textflag.h"
-
-// This is an implementation of the ChaCha20 encryption algorithm as
-// specified in RFC 7539. It uses vector instructions to compute
-// 4 keystream blocks in parallel (256 bytes) which are then XORed
-// with the bytes in the input slice.
-
-GLOBL ·constants<>(SB), RODATA|NOPTR, $32
-// BSWAP: swap bytes in each 4-byte element
-DATA ·constants<>+0x00(SB)/4, $0x03020100
-DATA ·constants<>+0x04(SB)/4, $0x07060504
-DATA ·constants<>+0x08(SB)/4, $0x0b0a0908
-DATA ·constants<>+0x0c(SB)/4, $0x0f0e0d0c
-// J0: [j0, j1, j2, j3]
-DATA ·constants<>+0x10(SB)/4, $0x61707865
-DATA ·constants<>+0x14(SB)/4, $0x3320646e
-DATA ·constants<>+0x18(SB)/4, $0x79622d32
-DATA ·constants<>+0x1c(SB)/4, $0x6b206574
-
-// EXRL targets:
-TEXT ·mvcSrcToBuf(SB), NOFRAME|NOSPLIT, $0
- MVC $1, (R1), (R8)
- RET
-
-TEXT ·mvcBufToDst(SB), NOFRAME|NOSPLIT, $0
- MVC $1, (R8), (R9)
- RET
-
-#define BSWAP V5
-#define J0 V6
-#define KEY0 V7
-#define KEY1 V8
-#define NONCE V9
-#define CTR V10
-#define M0 V11
-#define M1 V12
-#define M2 V13
-#define M3 V14
-#define INC V15
-#define X0 V16
-#define X1 V17
-#define X2 V18
-#define X3 V19
-#define X4 V20
-#define X5 V21
-#define X6 V22
-#define X7 V23
-#define X8 V24
-#define X9 V25
-#define X10 V26
-#define X11 V27
-#define X12 V28
-#define X13 V29
-#define X14 V30
-#define X15 V31
-
-#define NUM_ROUNDS 20
-
-#define ROUND4(a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3) \
- VAF a1, a0, a0 \
- VAF b1, b0, b0 \
- VAF c1, c0, c0 \
- VAF d1, d0, d0 \
- VX a0, a2, a2 \
- VX b0, b2, b2 \
- VX c0, c2, c2 \
- VX d0, d2, d2 \
- VERLLF $16, a2, a2 \
- VERLLF $16, b2, b2 \
- VERLLF $16, c2, c2 \
- VERLLF $16, d2, d2 \
- VAF a2, a3, a3 \
- VAF b2, b3, b3 \
- VAF c2, c3, c3 \
- VAF d2, d3, d3 \
- VX a3, a1, a1 \
- VX b3, b1, b1 \
- VX c3, c1, c1 \
- VX d3, d1, d1 \
- VERLLF $12, a1, a1 \
- VERLLF $12, b1, b1 \
- VERLLF $12, c1, c1 \
- VERLLF $12, d1, d1 \
- VAF a1, a0, a0 \
- VAF b1, b0, b0 \
- VAF c1, c0, c0 \
- VAF d1, d0, d0 \
- VX a0, a2, a2 \
- VX b0, b2, b2 \
- VX c0, c2, c2 \
- VX d0, d2, d2 \
- VERLLF $8, a2, a2 \
- VERLLF $8, b2, b2 \
- VERLLF $8, c2, c2 \
- VERLLF $8, d2, d2 \
- VAF a2, a3, a3 \
- VAF b2, b3, b3 \
- VAF c2, c3, c3 \
- VAF d2, d3, d3 \
- VX a3, a1, a1 \
- VX b3, b1, b1 \
- VX c3, c1, c1 \
- VX d3, d1, d1 \
- VERLLF $7, a1, a1 \
- VERLLF $7, b1, b1 \
- VERLLF $7, c1, c1 \
- VERLLF $7, d1, d1
-
-#define PERMUTE(mask, v0, v1, v2, v3) \
- VPERM v0, v0, mask, v0 \
- VPERM v1, v1, mask, v1 \
- VPERM v2, v2, mask, v2 \
- VPERM v3, v3, mask, v3
-
-#define ADDV(x, v0, v1, v2, v3) \
- VAF x, v0, v0 \
- VAF x, v1, v1 \
- VAF x, v2, v2 \
- VAF x, v3, v3
-
-#define XORV(off, dst, src, v0, v1, v2, v3) \
- VLM off(src), M0, M3 \
- PERMUTE(BSWAP, v0, v1, v2, v3) \
- VX v0, M0, M0 \
- VX v1, M1, M1 \
- VX v2, M2, M2 \
- VX v3, M3, M3 \
- VSTM M0, M3, off(dst)
-
-#define SHUFFLE(a, b, c, d, t, u, v, w) \
- VMRHF a, c, t \ // t = {a[0], c[0], a[1], c[1]}
- VMRHF b, d, u \ // u = {b[0], d[0], b[1], d[1]}
- VMRLF a, c, v \ // v = {a[2], c[2], a[3], c[3]}
- VMRLF b, d, w \ // w = {b[2], d[2], b[3], d[3]}
- VMRHF t, u, a \ // a = {a[0], b[0], c[0], d[0]}
- VMRLF t, u, b \ // b = {a[1], b[1], c[1], d[1]}
- VMRHF v, w, c \ // c = {a[2], b[2], c[2], d[2]}
- VMRLF v, w, d // d = {a[3], b[3], c[3], d[3]}
-
-// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32, buf *[256]byte, len *int)
-TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
- MOVD $·constants<>(SB), R1
- MOVD dst+0(FP), R2 // R2=&dst[0]
- LMG src+24(FP), R3, R4 // R3=&src[0] R4=len(src)
- MOVD key+48(FP), R5 // R5=key
- MOVD nonce+56(FP), R6 // R6=nonce
- MOVD counter+64(FP), R7 // R7=counter
- MOVD buf+72(FP), R8 // R8=buf
- MOVD len+80(FP), R9 // R9=len
-
- // load BSWAP and J0
- VLM (R1), BSWAP, J0
-
- // set up tail buffer
- ADD $-1, R4, R12
- MOVBZ R12, R12
- CMPUBEQ R12, $255, aligned
- MOVD R4, R1
- AND $~255, R1
- MOVD $(R3)(R1*1), R1
- EXRL $·mvcSrcToBuf(SB), R12
- MOVD $255, R0
- SUB R12, R0
- MOVD R0, (R9) // update len
-
-aligned:
- // setup
- MOVD $95, R0
- VLM (R5), KEY0, KEY1
- VLL R0, (R6), NONCE
- VZERO M0
- VLEIB $7, $32, M0
- VSRLB M0, NONCE, NONCE
-
- // initialize counter values
- VLREPF (R7), CTR
- VZERO INC
- VLEIF $1, $1, INC
- VLEIF $2, $2, INC
- VLEIF $3, $3, INC
- VAF INC, CTR, CTR
- VREPIF $4, INC
-
-chacha:
- VREPF $0, J0, X0
- VREPF $1, J0, X1
- VREPF $2, J0, X2
- VREPF $3, J0, X3
- VREPF $0, KEY0, X4
- VREPF $1, KEY0, X5
- VREPF $2, KEY0, X6
- VREPF $3, KEY0, X7
- VREPF $0, KEY1, X8
- VREPF $1, KEY1, X9
- VREPF $2, KEY1, X10
- VREPF $3, KEY1, X11
- VLR CTR, X12
- VREPF $1, NONCE, X13
- VREPF $2, NONCE, X14
- VREPF $3, NONCE, X15
-
- MOVD $(NUM_ROUNDS/2), R1
-
-loop:
- ROUND4(X0, X4, X12, X8, X1, X5, X13, X9, X2, X6, X14, X10, X3, X7, X15, X11)
- ROUND4(X0, X5, X15, X10, X1, X6, X12, X11, X2, X7, X13, X8, X3, X4, X14, X9)
-
- ADD $-1, R1
- BNE loop
-
- // decrement length
- ADD $-256, R4
- BLT tail
-
-continue:
- // rearrange vectors
- SHUFFLE(X0, X1, X2, X3, M0, M1, M2, M3)
- ADDV(J0, X0, X1, X2, X3)
- SHUFFLE(X4, X5, X6, X7, M0, M1, M2, M3)
- ADDV(KEY0, X4, X5, X6, X7)
- SHUFFLE(X8, X9, X10, X11, M0, M1, M2, M3)
- ADDV(KEY1, X8, X9, X10, X11)
- VAF CTR, X12, X12
- SHUFFLE(X12, X13, X14, X15, M0, M1, M2, M3)
- ADDV(NONCE, X12, X13, X14, X15)
-
- // increment counters
- VAF INC, CTR, CTR
-
- // xor keystream with plaintext
- XORV(0*64, R2, R3, X0, X4, X8, X12)
- XORV(1*64, R2, R3, X1, X5, X9, X13)
- XORV(2*64, R2, R3, X2, X6, X10, X14)
- XORV(3*64, R2, R3, X3, X7, X11, X15)
-
- // increment pointers
- MOVD $256(R2), R2
- MOVD $256(R3), R3
-
- CMPBNE R4, $0, chacha
- CMPUBEQ R12, $255, return
- EXRL $·mvcBufToDst(SB), R12 // len was updated during setup
-
-return:
- VSTEF $0, CTR, (R7)
- RET
-
-tail:
- MOVD R2, R9
- MOVD R8, R2
- MOVD R8, R3
- MOVD $0, R4
- JMP continue
-
-// func hasVectorFacility() bool
-TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1
- MOVD $x-24(SP), R1
- XC $24, 0(R1), 0(R1) // clear the storage
- MOVD $2, R0 // R0 is the number of double words stored -1
- WORD $0xB2B01000 // STFLE 0(R1)
- XOR R0, R0 // reset the value of R0
- MOVBZ z-8(SP), R1
- AND $0x40, R1
- BEQ novector
-
-vectorinstalled:
- // check if the vector instruction has been enabled
- VLEIB $0, $0xF, V16
- VLGVB $0, V16, R1
- CMPBNE R1, $0xF, novector
- MOVB $1, ret+0(FP) // have vx
- RET
-
-novector:
- MOVB $0, ret+0(FP) // no vx
- RET
diff --git a/vendor/golang.org/x/crypto/internal/chacha20/xor.go b/vendor/golang.org/x/crypto/internal/chacha20/xor.go
deleted file mode 100644
index 9c5ba0b..0000000
--- a/vendor/golang.org/x/crypto/internal/chacha20/xor.go
+++ /dev/null
@@ -1,43 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found src the LICENSE file.
-
-package chacha20
-
-import (
- "runtime"
-)
-
-// Platforms that have fast unaligned 32-bit little endian accesses.
-const unaligned = runtime.GOARCH == "386" ||
- runtime.GOARCH == "amd64" ||
- runtime.GOARCH == "arm64" ||
- runtime.GOARCH == "ppc64le" ||
- runtime.GOARCH == "s390x"
-
-// xor reads a little endian uint32 from src, XORs it with u and
-// places the result in little endian byte order in dst.
-func xor(dst, src []byte, u uint32) {
- _, _ = src[3], dst[3] // eliminate bounds checks
- if unaligned {
- // The compiler should optimize this code into
- // 32-bit unaligned little endian loads and stores.
- // TODO: delete once the compiler does a reliably
- // good job with the generic code below.
- // See issue #25111 for more details.
- v := uint32(src[0])
- v |= uint32(src[1]) << 8
- v |= uint32(src[2]) << 16
- v |= uint32(src[3]) << 24
- v ^= u
- dst[0] = byte(v)
- dst[1] = byte(v >> 8)
- dst[2] = byte(v >> 16)
- dst[3] = byte(v >> 24)
- } else {
- dst[0] = src[0] ^ byte(u)
- dst[1] = src[1] ^ byte(u>>8)
- dst[2] = src[2] ^ byte(u>>16)
- dst[3] = src[3] ^ byte(u>>24)
- }
-}
diff --git a/vendor/golang.org/x/crypto/internal/subtle/aliasing.go b/vendor/golang.org/x/crypto/internal/subtle/aliasing.go
deleted file mode 100644
index f38797b..0000000
--- a/vendor/golang.org/x/crypto/internal/subtle/aliasing.go
+++ /dev/null
@@ -1,32 +0,0 @@
-// Copyright 2018 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// +build !appengine
-
-// Package subtle implements functions that are often useful in cryptographic
-// code but require careful thought to use correctly.
-package subtle // import "golang.org/x/crypto/internal/subtle"
-
-import "unsafe"
-
-// AnyOverlap reports whether x and y share memory at any (not necessarily
-// corresponding) index. The memory beyond the slice length is ignored.
-func AnyOverlap(x, y []byte) bool {
- return len(x) > 0 && len(y) > 0 &&
- uintptr(unsafe.Pointer(&x[0])) <= uintptr(unsafe.Pointer(&y[len(y)-1])) &&
- uintptr(unsafe.Pointer(&y[0])) <= uintptr(unsafe.Pointer(&x[len(x)-1]))
-}
-
-// InexactOverlap reports whether x and y share memory at any non-corresponding
-// index. The memory beyond the slice length is ignored. Note that x and y can
-// have different lengths and still not have any inexact overlap.
-//
-// InexactOverlap can be used to implement the requirements of the crypto/cipher
-// AEAD, Block, BlockMode and Stream interfaces.
-func InexactOverlap(x, y []byte) bool {
- if len(x) == 0 || len(y) == 0 || &x[0] == &y[0] {
- return false
- }
- return AnyOverlap(x, y)
-}