aboutsummaryrefslogtreecommitdiff
path: root/vendor/gopkg.in/mgo.v2/internal/json/encode.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/gopkg.in/mgo.v2/internal/json/encode.go')
-rw-r--r--vendor/gopkg.in/mgo.v2/internal/json/encode.go1256
1 files changed, 0 insertions, 1256 deletions
diff --git a/vendor/gopkg.in/mgo.v2/internal/json/encode.go b/vendor/gopkg.in/mgo.v2/internal/json/encode.go
deleted file mode 100644
index 67a0f00..0000000
--- a/vendor/gopkg.in/mgo.v2/internal/json/encode.go
+++ /dev/null
@@ -1,1256 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package json implements encoding and decoding of JSON as defined in
-// RFC 4627. The mapping between JSON and Go values is described
-// in the documentation for the Marshal and Unmarshal functions.
-//
-// See "JSON and Go" for an introduction to this package:
-// https://golang.org/doc/articles/json_and_go.html
-package json
-
-import (
- "bytes"
- "encoding"
- "encoding/base64"
- "fmt"
- "math"
- "reflect"
- "runtime"
- "sort"
- "strconv"
- "strings"
- "sync"
- "unicode"
- "unicode/utf8"
-)
-
-// Marshal returns the JSON encoding of v.
-//
-// Marshal traverses the value v recursively.
-// If an encountered value implements the Marshaler interface
-// and is not a nil pointer, Marshal calls its MarshalJSON method
-// to produce JSON. If no MarshalJSON method is present but the
-// value implements encoding.TextMarshaler instead, Marshal calls
-// its MarshalText method.
-// The nil pointer exception is not strictly necessary
-// but mimics a similar, necessary exception in the behavior of
-// UnmarshalJSON.
-//
-// Otherwise, Marshal uses the following type-dependent default encodings:
-//
-// Boolean values encode as JSON booleans.
-//
-// Floating point, integer, and Number values encode as JSON numbers.
-//
-// String values encode as JSON strings coerced to valid UTF-8,
-// replacing invalid bytes with the Unicode replacement rune.
-// The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
-// to keep some browsers from misinterpreting JSON output as HTML.
-// Ampersand "&" is also escaped to "\u0026" for the same reason.
-// This escaping can be disabled using an Encoder with DisableHTMLEscaping.
-//
-// Array and slice values encode as JSON arrays, except that
-// []byte encodes as a base64-encoded string, and a nil slice
-// encodes as the null JSON value.
-//
-// Struct values encode as JSON objects. Each exported struct field
-// becomes a member of the object unless
-// - the field's tag is "-", or
-// - the field is empty and its tag specifies the "omitempty" option.
-// The empty values are false, 0, any
-// nil pointer or interface value, and any array, slice, map, or string of
-// length zero. The object's default key string is the struct field name
-// but can be specified in the struct field's tag value. The "json" key in
-// the struct field's tag value is the key name, followed by an optional comma
-// and options. Examples:
-//
-// // Field is ignored by this package.
-// Field int `json:"-"`
-//
-// // Field appears in JSON as key "myName".
-// Field int `json:"myName"`
-//
-// // Field appears in JSON as key "myName" and
-// // the field is omitted from the object if its value is empty,
-// // as defined above.
-// Field int `json:"myName,omitempty"`
-//
-// // Field appears in JSON as key "Field" (the default), but
-// // the field is skipped if empty.
-// // Note the leading comma.
-// Field int `json:",omitempty"`
-//
-// The "string" option signals that a field is stored as JSON inside a
-// JSON-encoded string. It applies only to fields of string, floating point,
-// integer, or boolean types. This extra level of encoding is sometimes used
-// when communicating with JavaScript programs:
-//
-// Int64String int64 `json:",string"`
-//
-// The key name will be used if it's a non-empty string consisting of
-// only Unicode letters, digits, dollar signs, percent signs, hyphens,
-// underscores and slashes.
-//
-// Anonymous struct fields are usually marshaled as if their inner exported fields
-// were fields in the outer struct, subject to the usual Go visibility rules amended
-// as described in the next paragraph.
-// An anonymous struct field with a name given in its JSON tag is treated as
-// having that name, rather than being anonymous.
-// An anonymous struct field of interface type is treated the same as having
-// that type as its name, rather than being anonymous.
-//
-// The Go visibility rules for struct fields are amended for JSON when
-// deciding which field to marshal or unmarshal. If there are
-// multiple fields at the same level, and that level is the least
-// nested (and would therefore be the nesting level selected by the
-// usual Go rules), the following extra rules apply:
-//
-// 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
-// even if there are multiple untagged fields that would otherwise conflict.
-// 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
-// 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
-//
-// Handling of anonymous struct fields is new in Go 1.1.
-// Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
-// an anonymous struct field in both current and earlier versions, give the field
-// a JSON tag of "-".
-//
-// Map values encode as JSON objects. The map's key type must either be a string
-// or implement encoding.TextMarshaler. The map keys are used as JSON object
-// keys, subject to the UTF-8 coercion described for string values above.
-//
-// Pointer values encode as the value pointed to.
-// A nil pointer encodes as the null JSON value.
-//
-// Interface values encode as the value contained in the interface.
-// A nil interface value encodes as the null JSON value.
-//
-// Channel, complex, and function values cannot be encoded in JSON.
-// Attempting to encode such a value causes Marshal to return
-// an UnsupportedTypeError.
-//
-// JSON cannot represent cyclic data structures and Marshal does not
-// handle them. Passing cyclic structures to Marshal will result in
-// an infinite recursion.
-//
-func Marshal(v interface{}) ([]byte, error) {
- e := &encodeState{}
- err := e.marshal(v, encOpts{escapeHTML: true})
- if err != nil {
- return nil, err
- }
- return e.Bytes(), nil
-}
-
-// MarshalIndent is like Marshal but applies Indent to format the output.
-func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
- b, err := Marshal(v)
- if err != nil {
- return nil, err
- }
- var buf bytes.Buffer
- err = Indent(&buf, b, prefix, indent)
- if err != nil {
- return nil, err
- }
- return buf.Bytes(), nil
-}
-
-// HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
-// characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
-// so that the JSON will be safe to embed inside HTML <script> tags.
-// For historical reasons, web browsers don't honor standard HTML
-// escaping within <script> tags, so an alternative JSON encoding must
-// be used.
-func HTMLEscape(dst *bytes.Buffer, src []byte) {
- // The characters can only appear in string literals,
- // so just scan the string one byte at a time.
- start := 0
- for i, c := range src {
- if c == '<' || c == '>' || c == '&' {
- if start < i {
- dst.Write(src[start:i])
- }
- dst.WriteString(`\u00`)
- dst.WriteByte(hex[c>>4])
- dst.WriteByte(hex[c&0xF])
- start = i + 1
- }
- // Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
- if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
- if start < i {
- dst.Write(src[start:i])
- }
- dst.WriteString(`\u202`)
- dst.WriteByte(hex[src[i+2]&0xF])
- start = i + 3
- }
- }
- if start < len(src) {
- dst.Write(src[start:])
- }
-}
-
-// Marshaler is the interface implemented by types that
-// can marshal themselves into valid JSON.
-type Marshaler interface {
- MarshalJSON() ([]byte, error)
-}
-
-// An UnsupportedTypeError is returned by Marshal when attempting
-// to encode an unsupported value type.
-type UnsupportedTypeError struct {
- Type reflect.Type
-}
-
-func (e *UnsupportedTypeError) Error() string {
- return "json: unsupported type: " + e.Type.String()
-}
-
-type UnsupportedValueError struct {
- Value reflect.Value
- Str string
-}
-
-func (e *UnsupportedValueError) Error() string {
- return "json: unsupported value: " + e.Str
-}
-
-// Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
-// attempting to encode a string value with invalid UTF-8 sequences.
-// As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
-// replacing invalid bytes with the Unicode replacement rune U+FFFD.
-// This error is no longer generated but is kept for backwards compatibility
-// with programs that might mention it.
-type InvalidUTF8Error struct {
- S string // the whole string value that caused the error
-}
-
-func (e *InvalidUTF8Error) Error() string {
- return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
-}
-
-type MarshalerError struct {
- Type reflect.Type
- Err error
-}
-
-func (e *MarshalerError) Error() string {
- return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
-}
-
-var hex = "0123456789abcdef"
-
-// An encodeState encodes JSON into a bytes.Buffer.
-type encodeState struct {
- bytes.Buffer // accumulated output
- scratch [64]byte
- ext Extension
-}
-
-var encodeStatePool sync.Pool
-
-func newEncodeState() *encodeState {
- if v := encodeStatePool.Get(); v != nil {
- e := v.(*encodeState)
- e.Reset()
- return e
- }
- return new(encodeState)
-}
-
-func (e *encodeState) marshal(v interface{}, opts encOpts) (err error) {
- defer func() {
- if r := recover(); r != nil {
- if _, ok := r.(runtime.Error); ok {
- panic(r)
- }
- if s, ok := r.(string); ok {
- panic(s)
- }
- err = r.(error)
- }
- }()
- e.reflectValue(reflect.ValueOf(v), opts)
- return nil
-}
-
-func (e *encodeState) error(err error) {
- panic(err)
-}
-
-func isEmptyValue(v reflect.Value) bool {
- switch v.Kind() {
- case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
- return v.Len() == 0
- case reflect.Bool:
- return !v.Bool()
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return v.Int() == 0
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- return v.Uint() == 0
- case reflect.Float32, reflect.Float64:
- return v.Float() == 0
- case reflect.Interface, reflect.Ptr:
- return v.IsNil()
- }
- return false
-}
-
-func (e *encodeState) reflectValue(v reflect.Value, opts encOpts) {
- valueEncoder(v)(e, v, opts)
-}
-
-type encOpts struct {
- // quoted causes primitive fields to be encoded inside JSON strings.
- quoted bool
- // escapeHTML causes '<', '>', and '&' to be escaped in JSON strings.
- escapeHTML bool
-}
-
-type encoderFunc func(e *encodeState, v reflect.Value, opts encOpts)
-
-var encoderCache struct {
- sync.RWMutex
- m map[reflect.Type]encoderFunc
-}
-
-func valueEncoder(v reflect.Value) encoderFunc {
- if !v.IsValid() {
- return invalidValueEncoder
- }
- return typeEncoder(v.Type())
-}
-
-func typeEncoder(t reflect.Type) encoderFunc {
- encoderCache.RLock()
- f := encoderCache.m[t]
- encoderCache.RUnlock()
- if f != nil {
- return f
- }
-
- // To deal with recursive types, populate the map with an
- // indirect func before we build it. This type waits on the
- // real func (f) to be ready and then calls it. This indirect
- // func is only used for recursive types.
- encoderCache.Lock()
- if encoderCache.m == nil {
- encoderCache.m = make(map[reflect.Type]encoderFunc)
- }
- var wg sync.WaitGroup
- wg.Add(1)
- encoderCache.m[t] = func(e *encodeState, v reflect.Value, opts encOpts) {
- wg.Wait()
- f(e, v, opts)
- }
- encoderCache.Unlock()
-
- // Compute fields without lock.
- // Might duplicate effort but won't hold other computations back.
- innerf := newTypeEncoder(t, true)
- f = func(e *encodeState, v reflect.Value, opts encOpts) {
- encode, ok := e.ext.encode[v.Type()]
- if !ok {
- innerf(e, v, opts)
- return
- }
-
- b, err := encode(v.Interface())
- if err == nil {
- // copy JSON into buffer, checking validity.
- err = compact(&e.Buffer, b, opts.escapeHTML)
- }
- if err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
- }
- wg.Done()
- encoderCache.Lock()
- encoderCache.m[t] = f
- encoderCache.Unlock()
- return f
-}
-
-var (
- marshalerType = reflect.TypeOf(new(Marshaler)).Elem()
- textMarshalerType = reflect.TypeOf(new(encoding.TextMarshaler)).Elem()
-)
-
-// newTypeEncoder constructs an encoderFunc for a type.
-// The returned encoder only checks CanAddr when allowAddr is true.
-func newTypeEncoder(t reflect.Type, allowAddr bool) encoderFunc {
- if t.Implements(marshalerType) {
- return marshalerEncoder
- }
- if t.Kind() != reflect.Ptr && allowAddr {
- if reflect.PtrTo(t).Implements(marshalerType) {
- return newCondAddrEncoder(addrMarshalerEncoder, newTypeEncoder(t, false))
- }
- }
-
- if t.Implements(textMarshalerType) {
- return textMarshalerEncoder
- }
- if t.Kind() != reflect.Ptr && allowAddr {
- if reflect.PtrTo(t).Implements(textMarshalerType) {
- return newCondAddrEncoder(addrTextMarshalerEncoder, newTypeEncoder(t, false))
- }
- }
-
- switch t.Kind() {
- case reflect.Bool:
- return boolEncoder
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- return intEncoder
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- return uintEncoder
- case reflect.Float32:
- return float32Encoder
- case reflect.Float64:
- return float64Encoder
- case reflect.String:
- return stringEncoder
- case reflect.Interface:
- return interfaceEncoder
- case reflect.Struct:
- return newStructEncoder(t)
- case reflect.Map:
- return newMapEncoder(t)
- case reflect.Slice:
- return newSliceEncoder(t)
- case reflect.Array:
- return newArrayEncoder(t)
- case reflect.Ptr:
- return newPtrEncoder(t)
- default:
- return unsupportedTypeEncoder
- }
-}
-
-func invalidValueEncoder(e *encodeState, v reflect.Value, _ encOpts) {
- e.WriteString("null")
-}
-
-func marshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- if v.Kind() == reflect.Ptr && v.IsNil() {
- e.WriteString("null")
- return
- }
- m := v.Interface().(Marshaler)
- b, err := m.MarshalJSON()
- if err == nil {
- // copy JSON into buffer, checking validity.
- err = compact(&e.Buffer, b, opts.escapeHTML)
- }
- if err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
-}
-
-func addrMarshalerEncoder(e *encodeState, v reflect.Value, _ encOpts) {
- va := v.Addr()
- if va.IsNil() {
- e.WriteString("null")
- return
- }
- m := va.Interface().(Marshaler)
- b, err := m.MarshalJSON()
- if err == nil {
- // copy JSON into buffer, checking validity.
- err = compact(&e.Buffer, b, true)
- }
- if err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
-}
-
-func textMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- if v.Kind() == reflect.Ptr && v.IsNil() {
- e.WriteString("null")
- return
- }
- m := v.Interface().(encoding.TextMarshaler)
- b, err := m.MarshalText()
- if err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
- e.stringBytes(b, opts.escapeHTML)
-}
-
-func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- va := v.Addr()
- if va.IsNil() {
- e.WriteString("null")
- return
- }
- m := va.Interface().(encoding.TextMarshaler)
- b, err := m.MarshalText()
- if err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
- e.stringBytes(b, opts.escapeHTML)
-}
-
-func boolEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- if opts.quoted {
- e.WriteByte('"')
- }
- if v.Bool() {
- e.WriteString("true")
- } else {
- e.WriteString("false")
- }
- if opts.quoted {
- e.WriteByte('"')
- }
-}
-
-func intEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
- if opts.quoted {
- e.WriteByte('"')
- }
- e.Write(b)
- if opts.quoted {
- e.WriteByte('"')
- }
-}
-
-func uintEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
- if opts.quoted {
- e.WriteByte('"')
- }
- e.Write(b)
- if opts.quoted {
- e.WriteByte('"')
- }
-}
-
-type floatEncoder int // number of bits
-
-func (bits floatEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- f := v.Float()
- if math.IsInf(f, 0) || math.IsNaN(f) {
- e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
- }
- b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
- if opts.quoted {
- e.WriteByte('"')
- }
- e.Write(b)
- if opts.quoted {
- e.WriteByte('"')
- }
-}
-
-var (
- float32Encoder = (floatEncoder(32)).encode
- float64Encoder = (floatEncoder(64)).encode
-)
-
-func stringEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- if v.Type() == numberType {
- numStr := v.String()
- // In Go1.5 the empty string encodes to "0", while this is not a valid number literal
- // we keep compatibility so check validity after this.
- if numStr == "" {
- numStr = "0" // Number's zero-val
- }
- if !isValidNumber(numStr) {
- e.error(fmt.Errorf("json: invalid number literal %q", numStr))
- }
- e.WriteString(numStr)
- return
- }
- if opts.quoted {
- sb, err := Marshal(v.String())
- if err != nil {
- e.error(err)
- }
- e.string(string(sb), opts.escapeHTML)
- } else {
- e.string(v.String(), opts.escapeHTML)
- }
-}
-
-func interfaceEncoder(e *encodeState, v reflect.Value, opts encOpts) {
- if v.IsNil() {
- e.WriteString("null")
- return
- }
- e.reflectValue(v.Elem(), opts)
-}
-
-func unsupportedTypeEncoder(e *encodeState, v reflect.Value, _ encOpts) {
- e.error(&UnsupportedTypeError{v.Type()})
-}
-
-type structEncoder struct {
- fields []field
- fieldEncs []encoderFunc
-}
-
-func (se *structEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- e.WriteByte('{')
- first := true
- for i, f := range se.fields {
- fv := fieldByIndex(v, f.index)
- if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
- continue
- }
- if first {
- first = false
- } else {
- e.WriteByte(',')
- }
- e.string(f.name, opts.escapeHTML)
- e.WriteByte(':')
- opts.quoted = f.quoted
- se.fieldEncs[i](e, fv, opts)
- }
- e.WriteByte('}')
-}
-
-func newStructEncoder(t reflect.Type) encoderFunc {
- fields := cachedTypeFields(t)
- se := &structEncoder{
- fields: fields,
- fieldEncs: make([]encoderFunc, len(fields)),
- }
- for i, f := range fields {
- se.fieldEncs[i] = typeEncoder(typeByIndex(t, f.index))
- }
- return se.encode
-}
-
-type mapEncoder struct {
- elemEnc encoderFunc
-}
-
-func (me *mapEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- if v.IsNil() {
- e.WriteString("null")
- return
- }
- e.WriteByte('{')
-
- // Extract and sort the keys.
- keys := v.MapKeys()
- sv := make([]reflectWithString, len(keys))
- for i, v := range keys {
- sv[i].v = v
- if err := sv[i].resolve(); err != nil {
- e.error(&MarshalerError{v.Type(), err})
- }
- }
- sort.Sort(byString(sv))
-
- for i, kv := range sv {
- if i > 0 {
- e.WriteByte(',')
- }
- e.string(kv.s, opts.escapeHTML)
- e.WriteByte(':')
- me.elemEnc(e, v.MapIndex(kv.v), opts)
- }
- e.WriteByte('}')
-}
-
-func newMapEncoder(t reflect.Type) encoderFunc {
- if t.Key().Kind() != reflect.String && !t.Key().Implements(textMarshalerType) {
- return unsupportedTypeEncoder
- }
- me := &mapEncoder{typeEncoder(t.Elem())}
- return me.encode
-}
-
-func encodeByteSlice(e *encodeState, v reflect.Value, _ encOpts) {
- if v.IsNil() {
- e.WriteString("null")
- return
- }
- s := v.Bytes()
- e.WriteByte('"')
- if len(s) < 1024 {
- // for small buffers, using Encode directly is much faster.
- dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
- base64.StdEncoding.Encode(dst, s)
- e.Write(dst)
- } else {
- // for large buffers, avoid unnecessary extra temporary
- // buffer space.
- enc := base64.NewEncoder(base64.StdEncoding, e)
- enc.Write(s)
- enc.Close()
- }
- e.WriteByte('"')
-}
-
-// sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
-type sliceEncoder struct {
- arrayEnc encoderFunc
-}
-
-func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- if v.IsNil() {
- e.WriteString("null")
- return
- }
- se.arrayEnc(e, v, opts)
-}
-
-func newSliceEncoder(t reflect.Type) encoderFunc {
- // Byte slices get special treatment; arrays don't.
- if t.Elem().Kind() == reflect.Uint8 &&
- !t.Elem().Implements(marshalerType) &&
- !t.Elem().Implements(textMarshalerType) {
- return encodeByteSlice
- }
- enc := &sliceEncoder{newArrayEncoder(t)}
- return enc.encode
-}
-
-type arrayEncoder struct {
- elemEnc encoderFunc
-}
-
-func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- e.WriteByte('[')
- n := v.Len()
- for i := 0; i < n; i++ {
- if i > 0 {
- e.WriteByte(',')
- }
- ae.elemEnc(e, v.Index(i), opts)
- }
- e.WriteByte(']')
-}
-
-func newArrayEncoder(t reflect.Type) encoderFunc {
- enc := &arrayEncoder{typeEncoder(t.Elem())}
- return enc.encode
-}
-
-type ptrEncoder struct {
- elemEnc encoderFunc
-}
-
-func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- if v.IsNil() {
- e.WriteString("null")
- return
- }
- pe.elemEnc(e, v.Elem(), opts)
-}
-
-func newPtrEncoder(t reflect.Type) encoderFunc {
- enc := &ptrEncoder{typeEncoder(t.Elem())}
- return enc.encode
-}
-
-type condAddrEncoder struct {
- canAddrEnc, elseEnc encoderFunc
-}
-
-func (ce *condAddrEncoder) encode(e *encodeState, v reflect.Value, opts encOpts) {
- if v.CanAddr() {
- ce.canAddrEnc(e, v, opts)
- } else {
- ce.elseEnc(e, v, opts)
- }
-}
-
-// newCondAddrEncoder returns an encoder that checks whether its value
-// CanAddr and delegates to canAddrEnc if so, else to elseEnc.
-func newCondAddrEncoder(canAddrEnc, elseEnc encoderFunc) encoderFunc {
- enc := &condAddrEncoder{canAddrEnc: canAddrEnc, elseEnc: elseEnc}
- return enc.encode
-}
-
-func isValidTag(s string) bool {
- if s == "" {
- return false
- }
- for _, c := range s {
- switch {
- case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
- // Backslash and quote chars are reserved, but
- // otherwise any punctuation chars are allowed
- // in a tag name.
- default:
- if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
- return false
- }
- }
- }
- return true
-}
-
-func fieldByIndex(v reflect.Value, index []int) reflect.Value {
- for _, i := range index {
- if v.Kind() == reflect.Ptr {
- if v.IsNil() {
- return reflect.Value{}
- }
- v = v.Elem()
- }
- v = v.Field(i)
- }
- return v
-}
-
-func typeByIndex(t reflect.Type, index []int) reflect.Type {
- for _, i := range index {
- if t.Kind() == reflect.Ptr {
- t = t.Elem()
- }
- t = t.Field(i).Type
- }
- return t
-}
-
-type reflectWithString struct {
- v reflect.Value
- s string
-}
-
-func (w *reflectWithString) resolve() error {
- if w.v.Kind() == reflect.String {
- w.s = w.v.String()
- return nil
- }
- buf, err := w.v.Interface().(encoding.TextMarshaler).MarshalText()
- w.s = string(buf)
- return err
-}
-
-// byString is a slice of reflectWithString where the reflect.Value is either
-// a string or an encoding.TextMarshaler.
-// It implements the methods to sort by string.
-type byString []reflectWithString
-
-func (sv byString) Len() int { return len(sv) }
-func (sv byString) Swap(i, j int) { sv[i], sv[j] = sv[j], sv[i] }
-func (sv byString) Less(i, j int) bool { return sv[i].s < sv[j].s }
-
-// NOTE: keep in sync with stringBytes below.
-func (e *encodeState) string(s string, escapeHTML bool) int {
- len0 := e.Len()
- e.WriteByte('"')
- start := 0
- for i := 0; i < len(s); {
- if b := s[i]; b < utf8.RuneSelf {
- if 0x20 <= b && b != '\\' && b != '"' &&
- (!escapeHTML || b != '<' && b != '>' && b != '&') {
- i++
- continue
- }
- if start < i {
- e.WriteString(s[start:i])
- }
- switch b {
- case '\\', '"':
- e.WriteByte('\\')
- e.WriteByte(b)
- case '\n':
- e.WriteByte('\\')
- e.WriteByte('n')
- case '\r':
- e.WriteByte('\\')
- e.WriteByte('r')
- case '\t':
- e.WriteByte('\\')
- e.WriteByte('t')
- default:
- // This encodes bytes < 0x20 except for \t, \n and \r.
- // If escapeHTML is set, it also escapes <, >, and &
- // because they can lead to security holes when
- // user-controlled strings are rendered into JSON
- // and served to some browsers.
- e.WriteString(`\u00`)
- e.WriteByte(hex[b>>4])
- e.WriteByte(hex[b&0xF])
- }
- i++
- start = i
- continue
- }
- c, size := utf8.DecodeRuneInString(s[i:])
- if c == utf8.RuneError && size == 1 {
- if start < i {
- e.WriteString(s[start:i])
- }
- e.WriteString(`\ufffd`)
- i += size
- start = i
- continue
- }
- // U+2028 is LINE SEPARATOR.
- // U+2029 is PARAGRAPH SEPARATOR.
- // They are both technically valid characters in JSON strings,
- // but don't work in JSONP, which has to be evaluated as JavaScript,
- // and can lead to security holes there. It is valid JSON to
- // escape them, so we do so unconditionally.
- // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
- if c == '\u2028' || c == '\u2029' {
- if start < i {
- e.WriteString(s[start:i])
- }
- e.WriteString(`\u202`)
- e.WriteByte(hex[c&0xF])
- i += size
- start = i
- continue
- }
- i += size
- }
- if start < len(s) {
- e.WriteString(s[start:])
- }
- e.WriteByte('"')
- return e.Len() - len0
-}
-
-// NOTE: keep in sync with string above.
-func (e *encodeState) stringBytes(s []byte, escapeHTML bool) int {
- len0 := e.Len()
- e.WriteByte('"')
- start := 0
- for i := 0; i < len(s); {
- if b := s[i]; b < utf8.RuneSelf {
- if 0x20 <= b && b != '\\' && b != '"' &&
- (!escapeHTML || b != '<' && b != '>' && b != '&') {
- i++
- continue
- }
- if start < i {
- e.Write(s[start:i])
- }
- switch b {
- case '\\', '"':
- e.WriteByte('\\')
- e.WriteByte(b)
- case '\n':
- e.WriteByte('\\')
- e.WriteByte('n')
- case '\r':
- e.WriteByte('\\')
- e.WriteByte('r')
- case '\t':
- e.WriteByte('\\')
- e.WriteByte('t')
- default:
- // This encodes bytes < 0x20 except for \t, \n and \r.
- // If escapeHTML is set, it also escapes <, >, and &
- // because they can lead to security holes when
- // user-controlled strings are rendered into JSON
- // and served to some browsers.
- e.WriteString(`\u00`)
- e.WriteByte(hex[b>>4])
- e.WriteByte(hex[b&0xF])
- }
- i++
- start = i
- continue
- }
- c, size := utf8.DecodeRune(s[i:])
- if c == utf8.RuneError && size == 1 {
- if start < i {
- e.Write(s[start:i])
- }
- e.WriteString(`\ufffd`)
- i += size
- start = i
- continue
- }
- // U+2028 is LINE SEPARATOR.
- // U+2029 is PARAGRAPH SEPARATOR.
- // They are both technically valid characters in JSON strings,
- // but don't work in JSONP, which has to be evaluated as JavaScript,
- // and can lead to security holes there. It is valid JSON to
- // escape them, so we do so unconditionally.
- // See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
- if c == '\u2028' || c == '\u2029' {
- if start < i {
- e.Write(s[start:i])
- }
- e.WriteString(`\u202`)
- e.WriteByte(hex[c&0xF])
- i += size
- start = i
- continue
- }
- i += size
- }
- if start < len(s) {
- e.Write(s[start:])
- }
- e.WriteByte('"')
- return e.Len() - len0
-}
-
-// A field represents a single field found in a struct.
-type field struct {
- name string
- nameBytes []byte // []byte(name)
- equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent
-
- tag bool
- index []int
- typ reflect.Type
- omitEmpty bool
- quoted bool
-}
-
-func fillField(f field) field {
- f.nameBytes = []byte(f.name)
- f.equalFold = foldFunc(f.nameBytes)
- return f
-}
-
-// byName sorts field by name, breaking ties with depth,
-// then breaking ties with "name came from json tag", then
-// breaking ties with index sequence.
-type byName []field
-
-func (x byName) Len() int { return len(x) }
-
-func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
-
-func (x byName) Less(i, j int) bool {
- if x[i].name != x[j].name {
- return x[i].name < x[j].name
- }
- if len(x[i].index) != len(x[j].index) {
- return len(x[i].index) < len(x[j].index)
- }
- if x[i].tag != x[j].tag {
- return x[i].tag
- }
- return byIndex(x).Less(i, j)
-}
-
-// byIndex sorts field by index sequence.
-type byIndex []field
-
-func (x byIndex) Len() int { return len(x) }
-
-func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
-
-func (x byIndex) Less(i, j int) bool {
- for k, xik := range x[i].index {
- if k >= len(x[j].index) {
- return false
- }
- if xik != x[j].index[k] {
- return xik < x[j].index[k]
- }
- }
- return len(x[i].index) < len(x[j].index)
-}
-
-// typeFields returns a list of fields that JSON should recognize for the given type.
-// The algorithm is breadth-first search over the set of structs to include - the top struct
-// and then any reachable anonymous structs.
-func typeFields(t reflect.Type) []field {
- // Anonymous fields to explore at the current level and the next.
- current := []field{}
- next := []field{{typ: t}}
-
- // Count of queued names for current level and the next.
- count := map[reflect.Type]int{}
- nextCount := map[reflect.Type]int{}
-
- // Types already visited at an earlier level.
- visited := map[reflect.Type]bool{}
-
- // Fields found.
- var fields []field
-
- for len(next) > 0 {
- current, next = next, current[:0]
- count, nextCount = nextCount, map[reflect.Type]int{}
-
- for _, f := range current {
- if visited[f.typ] {
- continue
- }
- visited[f.typ] = true
-
- // Scan f.typ for fields to include.
- for i := 0; i < f.typ.NumField(); i++ {
- sf := f.typ.Field(i)
- if sf.PkgPath != "" && !sf.Anonymous { // unexported
- continue
- }
- tag := sf.Tag.Get("json")
- if tag == "-" {
- continue
- }
- name, opts := parseTag(tag)
- if !isValidTag(name) {
- name = ""
- }
- index := make([]int, len(f.index)+1)
- copy(index, f.index)
- index[len(f.index)] = i
-
- ft := sf.Type
- if ft.Name() == "" && ft.Kind() == reflect.Ptr {
- // Follow pointer.
- ft = ft.Elem()
- }
-
- // Only strings, floats, integers, and booleans can be quoted.
- quoted := false
- if opts.Contains("string") {
- switch ft.Kind() {
- case reflect.Bool,
- reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64,
- reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64,
- reflect.Float32, reflect.Float64,
- reflect.String:
- quoted = true
- }
- }
-
- // Record found field and index sequence.
- if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
- tagged := name != ""
- if name == "" {
- name = sf.Name
- }
- fields = append(fields, fillField(field{
- name: name,
- tag: tagged,
- index: index,
- typ: ft,
- omitEmpty: opts.Contains("omitempty"),
- quoted: quoted,
- }))
- if count[f.typ] > 1 {
- // If there were multiple instances, add a second,
- // so that the annihilation code will see a duplicate.
- // It only cares about the distinction between 1 or 2,
- // so don't bother generating any more copies.
- fields = append(fields, fields[len(fields)-1])
- }
- continue
- }
-
- // Record new anonymous struct to explore in next round.
- nextCount[ft]++
- if nextCount[ft] == 1 {
- next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))
- }
- }
- }
- }
-
- sort.Sort(byName(fields))
-
- // Delete all fields that are hidden by the Go rules for embedded fields,
- // except that fields with JSON tags are promoted.
-
- // The fields are sorted in primary order of name, secondary order
- // of field index length. Loop over names; for each name, delete
- // hidden fields by choosing the one dominant field that survives.
- out := fields[:0]
- for advance, i := 0, 0; i < len(fields); i += advance {
- // One iteration per name.
- // Find the sequence of fields with the name of this first field.
- fi := fields[i]
- name := fi.name
- for advance = 1; i+advance < len(fields); advance++ {
- fj := fields[i+advance]
- if fj.name != name {
- break
- }
- }
- if advance == 1 { // Only one field with this name
- out = append(out, fi)
- continue
- }
- dominant, ok := dominantField(fields[i : i+advance])
- if ok {
- out = append(out, dominant)
- }
- }
-
- fields = out
- sort.Sort(byIndex(fields))
-
- return fields
-}
-
-// dominantField looks through the fields, all of which are known to
-// have the same name, to find the single field that dominates the
-// others using Go's embedding rules, modified by the presence of
-// JSON tags. If there are multiple top-level fields, the boolean
-// will be false: This condition is an error in Go and we skip all
-// the fields.
-func dominantField(fields []field) (field, bool) {
- // The fields are sorted in increasing index-length order. The winner
- // must therefore be one with the shortest index length. Drop all
- // longer entries, which is easy: just truncate the slice.
- length := len(fields[0].index)
- tagged := -1 // Index of first tagged field.
- for i, f := range fields {
- if len(f.index) > length {
- fields = fields[:i]
- break
- }
- if f.tag {
- if tagged >= 0 {
- // Multiple tagged fields at the same level: conflict.
- // Return no field.
- return field{}, false
- }
- tagged = i
- }
- }
- if tagged >= 0 {
- return fields[tagged], true
- }
- // All remaining fields have the same length. If there's more than one,
- // we have a conflict (two fields named "X" at the same level) and we
- // return no field.
- if len(fields) > 1 {
- return field{}, false
- }
- return fields[0], true
-}
-
-var fieldCache struct {
- sync.RWMutex
- m map[reflect.Type][]field
-}
-
-// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
-func cachedTypeFields(t reflect.Type) []field {
- fieldCache.RLock()
- f := fieldCache.m[t]
- fieldCache.RUnlock()
- if f != nil {
- return f
- }
-
- // Compute fields without lock.
- // Might duplicate effort but won't hold other computations back.
- f = typeFields(t)
- if f == nil {
- f = []field{}
- }
-
- fieldCache.Lock()
- if fieldCache.m == nil {
- fieldCache.m = map[reflect.Type][]field{}
- }
- fieldCache.m[t] = f
- fieldCache.Unlock()
- return f
-}