aboutsummaryrefslogtreecommitdiff
path: root/vendor/go.opencensus.io/stats/view/aggregation_data.go
blob: 88c500bff9eaa4be6258141984141bac6b2b7820 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2017, OpenCensus Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

package view

import (
	"math"
)

// AggregationData represents an aggregated value from a collection.
// They are reported on the view data during exporting.
// Mosts users won't directly access aggregration data.
type AggregationData interface {
	isAggregationData() bool
	addSample(v float64)
	clone() AggregationData
	equal(other AggregationData) bool
}

const epsilon = 1e-9

// CountData is the aggregated data for the Count aggregation.
// A count aggregation processes data and counts the recordings.
//
// Most users won't directly access count data.
type CountData struct {
	Value int64
}

func (a *CountData) isAggregationData() bool { return true }

func (a *CountData) addSample(v float64) {
	a.Value = a.Value + 1
}

func (a *CountData) clone() AggregationData {
	return &CountData{Value: a.Value}
}

func (a *CountData) equal(other AggregationData) bool {
	a2, ok := other.(*CountData)
	if !ok {
		return false
	}

	return a.Value == a2.Value
}

// SumData is the aggregated data for the Sum aggregation.
// A sum aggregation processes data and sums up the recordings.
//
// Most users won't directly access sum data.
type SumData struct {
	Value float64
}

func (a *SumData) isAggregationData() bool { return true }

func (a *SumData) addSample(f float64) {
	a.Value += f
}

func (a *SumData) clone() AggregationData {
	return &SumData{Value: a.Value}
}

func (a *SumData) equal(other AggregationData) bool {
	a2, ok := other.(*SumData)
	if !ok {
		return false
	}
	return math.Pow(a.Value-a2.Value, 2) < epsilon
}

// DistributionData is the aggregated data for the
// Distribution aggregation.
//
// Most users won't directly access distribution data.
type DistributionData struct {
	Count           int64     // number of data points aggregated
	Min             float64   // minimum value in the distribution
	Max             float64   // max value in the distribution
	Mean            float64   // mean of the distribution
	SumOfSquaredDev float64   // sum of the squared deviation from the mean
	CountPerBucket  []int64   // number of occurrences per bucket
	bounds          []float64 // histogram distribution of the values
}

func newDistributionData(bounds []float64) *DistributionData {
	return &DistributionData{
		CountPerBucket: make([]int64, len(bounds)+1),
		bounds:         bounds,
		Min:            math.MaxFloat64,
		Max:            math.SmallestNonzeroFloat64,
	}
}

// Sum returns the sum of all samples collected.
func (a *DistributionData) Sum() float64 { return a.Mean * float64(a.Count) }

func (a *DistributionData) variance() float64 {
	if a.Count <= 1 {
		return 0
	}
	return a.SumOfSquaredDev / float64(a.Count-1)
}

func (a *DistributionData) isAggregationData() bool { return true }

func (a *DistributionData) addSample(f float64) {
	if f < a.Min {
		a.Min = f
	}
	if f > a.Max {
		a.Max = f
	}
	a.Count++
	a.incrementBucketCount(f)

	if a.Count == 1 {
		a.Mean = f
		return
	}

	oldMean := a.Mean
	a.Mean = a.Mean + (f-a.Mean)/float64(a.Count)
	a.SumOfSquaredDev = a.SumOfSquaredDev + (f-oldMean)*(f-a.Mean)
}

func (a *DistributionData) incrementBucketCount(f float64) {
	if len(a.bounds) == 0 {
		a.CountPerBucket[0]++
		return
	}

	for i, b := range a.bounds {
		if f < b {
			a.CountPerBucket[i]++
			return
		}
	}
	a.CountPerBucket[len(a.bounds)]++
}

func (a *DistributionData) clone() AggregationData {
	counts := make([]int64, len(a.CountPerBucket))
	copy(counts, a.CountPerBucket)
	c := *a
	c.CountPerBucket = counts
	return &c
}

func (a *DistributionData) equal(other AggregationData) bool {
	a2, ok := other.(*DistributionData)
	if !ok {
		return false
	}
	if a2 == nil {
		return false
	}
	if len(a.CountPerBucket) != len(a2.CountPerBucket) {
		return false
	}
	for i := range a.CountPerBucket {
		if a.CountPerBucket[i] != a2.CountPerBucket[i] {
			return false
		}
	}
	return a.Count == a2.Count && a.Min == a2.Min && a.Max == a2.Max && math.Pow(a.Mean-a2.Mean, 2) < epsilon && math.Pow(a.variance()-a2.variance(), 2) < epsilon
}

// LastValueData returns the last value recorded for LastValue aggregation.
type LastValueData struct {
	Value float64
}

func (l *LastValueData) isAggregationData() bool {
	return true
}

func (l *LastValueData) addSample(v float64) {
	l.Value = v
}

func (l *LastValueData) clone() AggregationData {
	return &LastValueData{l.Value}
}

func (l *LastValueData) equal(other AggregationData) bool {
	a2, ok := other.(*LastValueData)
	if !ok {
		return false
	}
	return l.Value == a2.Value
}