aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/crypto/ssh/handshake.go
blob: 4f7912ecd6565bf1b5405b7c2a68d31493411697 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssh

import (
	"crypto/rand"
	"errors"
	"fmt"
	"io"
	"log"
	"net"
	"sync"
)

// debugHandshake, if set, prints messages sent and received.  Key
// exchange messages are printed as if DH were used, so the debug
// messages are wrong when using ECDH.
const debugHandshake = false

// chanSize sets the amount of buffering SSH connections. This is
// primarily for testing: setting chanSize=0 uncovers deadlocks more
// quickly.
const chanSize = 16

// keyingTransport is a packet based transport that supports key
// changes. It need not be thread-safe. It should pass through
// msgNewKeys in both directions.
type keyingTransport interface {
	packetConn

	// prepareKeyChange sets up a key change. The key change for a
	// direction will be effected if a msgNewKeys message is sent
	// or received.
	prepareKeyChange(*algorithms, *kexResult) error
}

// handshakeTransport implements rekeying on top of a keyingTransport
// and offers a thread-safe writePacket() interface.
type handshakeTransport struct {
	conn   keyingTransport
	config *Config

	serverVersion []byte
	clientVersion []byte

	// hostKeys is non-empty if we are the server. In that case,
	// it contains all host keys that can be used to sign the
	// connection.
	hostKeys []Signer

	// hostKeyAlgorithms is non-empty if we are the client. In that case,
	// we accept these key types from the server as host key.
	hostKeyAlgorithms []string

	// On read error, incoming is closed, and readError is set.
	incoming  chan []byte
	readError error

	mu             sync.Mutex
	writeError     error
	sentInitPacket []byte
	sentInitMsg    *kexInitMsg
	pendingPackets [][]byte // Used when a key exchange is in progress.

	// If the read loop wants to schedule a kex, it pings this
	// channel, and the write loop will send out a kex
	// message.
	requestKex chan struct{}

	// If the other side requests or confirms a kex, its kexInit
	// packet is sent here for the write loop to find it.
	startKex chan *pendingKex

	// data for host key checking
	hostKeyCallback HostKeyCallback
	dialAddress     string
	remoteAddr      net.Addr

	// bannerCallback is non-empty if we are the client and it has been set in
	// ClientConfig. In that case it is called during the user authentication
	// dance to handle a custom server's message.
	bannerCallback BannerCallback

	// Algorithms agreed in the last key exchange.
	algorithms *algorithms

	readPacketsLeft uint32
	readBytesLeft   int64

	writePacketsLeft uint32
	writeBytesLeft   int64

	// The session ID or nil if first kex did not complete yet.
	sessionID []byte
}

type pendingKex struct {
	otherInit []byte
	done      chan error
}

func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
	t := &handshakeTransport{
		conn:          conn,
		serverVersion: serverVersion,
		clientVersion: clientVersion,
		incoming:      make(chan []byte, chanSize),
		requestKex:    make(chan struct{}, 1),
		startKex:      make(chan *pendingKex, 1),

		config: config,
	}
	t.resetReadThresholds()
	t.resetWriteThresholds()

	// We always start with a mandatory key exchange.
	t.requestKex <- struct{}{}
	return t
}

func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
	t.dialAddress = dialAddr
	t.remoteAddr = addr
	t.hostKeyCallback = config.HostKeyCallback
	t.bannerCallback = config.BannerCallback
	if config.HostKeyAlgorithms != nil {
		t.hostKeyAlgorithms = config.HostKeyAlgorithms
	} else {
		t.hostKeyAlgorithms = supportedHostKeyAlgos
	}
	go t.readLoop()
	go t.kexLoop()
	return t
}

func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
	t.hostKeys = config.hostKeys
	go t.readLoop()
	go t.kexLoop()
	return t
}

func (t *handshakeTransport) getSessionID() []byte {
	return t.sessionID
}

// waitSession waits for the session to be established. This should be
// the first thing to call after instantiating handshakeTransport.
func (t *handshakeTransport) waitSession() error {
	p, err := t.readPacket()
	if err != nil {
		return err
	}
	if p[0] != msgNewKeys {
		return fmt.Errorf("ssh: first packet should be msgNewKeys")
	}

	return nil
}

func (t *handshakeTransport) id() string {
	if len(t.hostKeys) > 0 {
		return "server"
	}
	return "client"
}

func (t *handshakeTransport) printPacket(p []byte, write bool) {
	action := "got"
	if write {
		action = "sent"
	}

	if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
		log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p))
	} else {
		msg, err := decode(p)
		log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err)
	}
}

func (t *handshakeTransport) readPacket() ([]byte, error) {
	p, ok := <-t.incoming
	if !ok {
		return nil, t.readError
	}
	return p, nil
}

func (t *handshakeTransport) readLoop() {
	first := true
	for {
		p, err := t.readOnePacket(first)
		first = false
		if err != nil {
			t.readError = err
			close(t.incoming)
			break
		}
		if p[0] == msgIgnore || p[0] == msgDebug {
			continue
		}
		t.incoming <- p
	}

	// Stop writers too.
	t.recordWriteError(t.readError)

	// Unblock the writer should it wait for this.
	close(t.startKex)

	// Don't close t.requestKex; it's also written to from writePacket.
}

func (t *handshakeTransport) pushPacket(p []byte) error {
	if debugHandshake {
		t.printPacket(p, true)
	}
	return t.conn.writePacket(p)
}

func (t *handshakeTransport) getWriteError() error {
	t.mu.Lock()
	defer t.mu.Unlock()
	return t.writeError
}

func (t *handshakeTransport) recordWriteError(err error) {
	t.mu.Lock()
	defer t.mu.Unlock()
	if t.writeError == nil && err != nil {
		t.writeError = err
	}
}

func (t *handshakeTransport) requestKeyExchange() {
	select {
	case t.requestKex <- struct{}{}:
	default:
		// something already requested a kex, so do nothing.
	}
}

func (t *handshakeTransport) resetWriteThresholds() {
	t.writePacketsLeft = packetRekeyThreshold
	if t.config.RekeyThreshold > 0 {
		t.writeBytesLeft = int64(t.config.RekeyThreshold)
	} else if t.algorithms != nil {
		t.writeBytesLeft = t.algorithms.w.rekeyBytes()
	} else {
		t.writeBytesLeft = 1 << 30
	}
}

func (t *handshakeTransport) kexLoop() {

write:
	for t.getWriteError() == nil {
		var request *pendingKex
		var sent bool

		for request == nil || !sent {
			var ok bool
			select {
			case request, ok = <-t.startKex:
				if !ok {
					break write
				}
			case <-t.requestKex:
				break
			}

			if !sent {
				if err := t.sendKexInit(); err != nil {
					t.recordWriteError(err)
					break
				}
				sent = true
			}
		}

		if err := t.getWriteError(); err != nil {
			if request != nil {
				request.done <- err
			}
			break
		}

		// We're not servicing t.requestKex, but that is OK:
		// we never block on sending to t.requestKex.

		// We're not servicing t.startKex, but the remote end
		// has just sent us a kexInitMsg, so it can't send
		// another key change request, until we close the done
		// channel on the pendingKex request.

		err := t.enterKeyExchange(request.otherInit)

		t.mu.Lock()
		t.writeError = err
		t.sentInitPacket = nil
		t.sentInitMsg = nil

		t.resetWriteThresholds()

		// we have completed the key exchange. Since the
		// reader is still blocked, it is safe to clear out
		// the requestKex channel. This avoids the situation
		// where: 1) we consumed our own request for the
		// initial kex, and 2) the kex from the remote side
		// caused another send on the requestKex channel,
	clear:
		for {
			select {
			case <-t.requestKex:
				//
			default:
				break clear
			}
		}

		request.done <- t.writeError

		// kex finished. Push packets that we received while
		// the kex was in progress. Don't look at t.startKex
		// and don't increment writtenSinceKex: if we trigger
		// another kex while we are still busy with the last
		// one, things will become very confusing.
		for _, p := range t.pendingPackets {
			t.writeError = t.pushPacket(p)
			if t.writeError != nil {
				break
			}
		}
		t.pendingPackets = t.pendingPackets[:0]
		t.mu.Unlock()
	}

	// drain startKex channel. We don't service t.requestKex
	// because nobody does blocking sends there.
	go func() {
		for init := range t.startKex {
			init.done <- t.writeError
		}
	}()

	// Unblock reader.
	t.conn.Close()
}

// The protocol uses uint32 for packet counters, so we can't let them
// reach 1<<32.  We will actually read and write more packets than
// this, though: the other side may send more packets, and after we
// hit this limit on writing we will send a few more packets for the
// key exchange itself.
const packetRekeyThreshold = (1 << 31)

func (t *handshakeTransport) resetReadThresholds() {
	t.readPacketsLeft = packetRekeyThreshold
	if t.config.RekeyThreshold > 0 {
		t.readBytesLeft = int64(t.config.RekeyThreshold)
	} else if t.algorithms != nil {
		t.readBytesLeft = t.algorithms.r.rekeyBytes()
	} else {
		t.readBytesLeft = 1 << 30
	}
}

func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) {
	p, err := t.conn.readPacket()
	if err != nil {
		return nil, err
	}

	if t.readPacketsLeft > 0 {
		t.readPacketsLeft--
	} else {
		t.requestKeyExchange()
	}

	if t.readBytesLeft > 0 {
		t.readBytesLeft -= int64(len(p))
	} else {
		t.requestKeyExchange()
	}

	if debugHandshake {
		t.printPacket(p, false)
	}

	if first && p[0] != msgKexInit {
		return nil, fmt.Errorf("ssh: first packet should be msgKexInit")
	}

	if p[0] != msgKexInit {
		return p, nil
	}

	firstKex := t.sessionID == nil

	kex := pendingKex{
		done:      make(chan error, 1),
		otherInit: p,
	}
	t.startKex <- &kex
	err = <-kex.done

	if debugHandshake {
		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
	}

	if err != nil {
		return nil, err
	}

	t.resetReadThresholds()

	// By default, a key exchange is hidden from higher layers by
	// translating it into msgIgnore.
	successPacket := []byte{msgIgnore}
	if firstKex {
		// sendKexInit() for the first kex waits for
		// msgNewKeys so the authentication process is
		// guaranteed to happen over an encrypted transport.
		successPacket = []byte{msgNewKeys}
	}

	return successPacket, nil
}

// sendKexInit sends a key change message.
func (t *handshakeTransport) sendKexInit() error {
	t.mu.Lock()
	defer t.mu.Unlock()
	if t.sentInitMsg != nil {
		// kexInits may be sent either in response to the other side,
		// or because our side wants to initiate a key change, so we
		// may have already sent a kexInit. In that case, don't send a
		// second kexInit.
		return nil
	}

	msg := &kexInitMsg{
		KexAlgos:                t.config.KeyExchanges,
		CiphersClientServer:     t.config.Ciphers,
		CiphersServerClient:     t.config.Ciphers,
		MACsClientServer:        t.config.MACs,
		MACsServerClient:        t.config.MACs,
		CompressionClientServer: supportedCompressions,
		CompressionServerClient: supportedCompressions,
	}
	io.ReadFull(rand.Reader, msg.Cookie[:])

	if len(t.hostKeys) > 0 {
		for _, k := range t.hostKeys {
			msg.ServerHostKeyAlgos = append(
				msg.ServerHostKeyAlgos, k.PublicKey().Type())
		}
	} else {
		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
	}
	packet := Marshal(msg)

	// writePacket destroys the contents, so save a copy.
	packetCopy := make([]byte, len(packet))
	copy(packetCopy, packet)

	if err := t.pushPacket(packetCopy); err != nil {
		return err
	}

	t.sentInitMsg = msg
	t.sentInitPacket = packet

	return nil
}

func (t *handshakeTransport) writePacket(p []byte) error {
	switch p[0] {
	case msgKexInit:
		return errors.New("ssh: only handshakeTransport can send kexInit")
	case msgNewKeys:
		return errors.New("ssh: only handshakeTransport can send newKeys")
	}

	t.mu.Lock()
	defer t.mu.Unlock()
	if t.writeError != nil {
		return t.writeError
	}

	if t.sentInitMsg != nil {
		// Copy the packet so the writer can reuse the buffer.
		cp := make([]byte, len(p))
		copy(cp, p)
		t.pendingPackets = append(t.pendingPackets, cp)
		return nil
	}

	if t.writeBytesLeft > 0 {
		t.writeBytesLeft -= int64(len(p))
	} else {
		t.requestKeyExchange()
	}

	if t.writePacketsLeft > 0 {
		t.writePacketsLeft--
	} else {
		t.requestKeyExchange()
	}

	if err := t.pushPacket(p); err != nil {
		t.writeError = err
	}

	return nil
}

func (t *handshakeTransport) Close() error {
	return t.conn.Close()
}

func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
	if debugHandshake {
		log.Printf("%s entered key exchange", t.id())
	}

	otherInit := &kexInitMsg{}
	if err := Unmarshal(otherInitPacket, otherInit); err != nil {
		return err
	}

	magics := handshakeMagics{
		clientVersion: t.clientVersion,
		serverVersion: t.serverVersion,
		clientKexInit: otherInitPacket,
		serverKexInit: t.sentInitPacket,
	}

	clientInit := otherInit
	serverInit := t.sentInitMsg
	if len(t.hostKeys) == 0 {
		clientInit, serverInit = serverInit, clientInit

		magics.clientKexInit = t.sentInitPacket
		magics.serverKexInit = otherInitPacket
	}

	var err error
	t.algorithms, err = findAgreedAlgorithms(clientInit, serverInit)
	if err != nil {
		return err
	}

	// We don't send FirstKexFollows, but we handle receiving it.
	//
	// RFC 4253 section 7 defines the kex and the agreement method for
	// first_kex_packet_follows. It states that the guessed packet
	// should be ignored if the "kex algorithm and/or the host
	// key algorithm is guessed wrong (server and client have
	// different preferred algorithm), or if any of the other
	// algorithms cannot be agreed upon". The other algorithms have
	// already been checked above so the kex algorithm and host key
	// algorithm are checked here.
	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
		// other side sent a kex message for the wrong algorithm,
		// which we have to ignore.
		if _, err := t.conn.readPacket(); err != nil {
			return err
		}
	}

	kex, ok := kexAlgoMap[t.algorithms.kex]
	if !ok {
		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
	}

	var result *kexResult
	if len(t.hostKeys) > 0 {
		result, err = t.server(kex, t.algorithms, &magics)
	} else {
		result, err = t.client(kex, t.algorithms, &magics)
	}

	if err != nil {
		return err
	}

	if t.sessionID == nil {
		t.sessionID = result.H
	}
	result.SessionID = t.sessionID

	if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
		return err
	}
	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
		return err
	}
	if packet, err := t.conn.readPacket(); err != nil {
		return err
	} else if packet[0] != msgNewKeys {
		return unexpectedMessageError(msgNewKeys, packet[0])
	}

	return nil
}

func (t *handshakeTransport) server(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
	var hostKey Signer
	for _, k := range t.hostKeys {
		if algs.hostKey == k.PublicKey().Type() {
			hostKey = k
		}
	}

	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey)
	return r, err
}

func (t *handshakeTransport) client(kex kexAlgorithm, algs *algorithms, magics *handshakeMagics) (*kexResult, error) {
	result, err := kex.Client(t.conn, t.config.Rand, magics)
	if err != nil {
		return nil, err
	}

	hostKey, err := ParsePublicKey(result.HostKey)
	if err != nil {
		return nil, err
	}

	if err := verifyHostKeySignature(hostKey, result); err != nil {
		return nil, err
	}

	err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
	if err != nil {
		return nil, err
	}

	return result, nil
}