aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/text/internal/triegen/triegen.go
blob: adb01081247b93b1957fa78a5b0584a1cef26902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package triegen implements a code generator for a trie for associating
// unsigned integer values with UTF-8 encoded runes.
//
// Many of the go.text packages use tries for storing per-rune information.  A
// trie is especially useful if many of the runes have the same value. If this
// is the case, many blocks can be expected to be shared allowing for
// information on many runes to be stored in little space.
//
// As most of the lookups are done directly on []byte slices, the tries use the
// UTF-8 bytes directly for the lookup. This saves a conversion from UTF-8 to
// runes and contributes a little bit to better performance. It also naturally
// provides a fast path for ASCII.
//
// Space is also an issue. There are many code points defined in Unicode and as
// a result tables can get quite large. So every byte counts. The triegen
// package automatically chooses the smallest integer values to represent the
// tables. Compacters allow further compression of the trie by allowing for
// alternative representations of individual trie blocks.
//
// triegen allows generating multiple tries as a single structure. This is
// useful when, for example, one wants to generate tries for several languages
// that have a lot of values in common. Some existing libraries for
// internationalization store all per-language data as a dynamically loadable
// chunk. The go.text packages are designed with the assumption that the user
// typically wants to compile in support for all supported languages, in line
// with the approach common to Go to create a single standalone binary. The
// multi-root trie approach can give significant storage savings in this
// scenario.
//
// triegen generates both tables and code. The code is optimized to use the
// automatically chosen data types. The following code is generated for a Trie
// or multiple Tries named "foo":
//	- type fooTrie
//		The trie type.
//
//	- func newFooTrie(x int) *fooTrie
//		Trie constructor, where x is the index of the trie passed to Gen.
//
//	- func (t *fooTrie) lookup(s []byte) (v uintX, sz int)
//		The lookup method, where uintX is automatically chosen.
//
//	- func lookupString, lookupUnsafe and lookupStringUnsafe
//		Variants of the above.
//
//	- var fooValues and fooIndex and any tables generated by Compacters.
//		The core trie data.
//
//	- var fooTrieHandles
//		Indexes of starter blocks in case of multiple trie roots.
//
// It is recommended that users test the generated trie by checking the returned
// value for every rune. Such exhaustive tests are possible as the the number of
// runes in Unicode is limited.
package triegen // import "golang.org/x/text/internal/triegen"

// TODO: Arguably, the internally optimized data types would not have to be
// exposed in the generated API. We could also investigate not generating the
// code, but using it through a package. We would have to investigate the impact
// on performance of making such change, though. For packages like unicode/norm,
// small changes like this could tank performance.

import (
	"encoding/binary"
	"fmt"
	"hash/crc64"
	"io"
	"log"
	"unicode/utf8"
)

// builder builds a set of tries for associating values with runes. The set of
// tries can share common index and value blocks.
type builder struct {
	Name string

	// ValueType is the type of the trie values looked up.
	ValueType string

	// ValueSize is the byte size of the ValueType.
	ValueSize int

	// IndexType is the type of trie index values used for all UTF-8 bytes of
	// a rune except the last one.
	IndexType string

	// IndexSize is the byte size of the IndexType.
	IndexSize int

	// SourceType is used when generating the lookup functions. If the user
	// requests StringSupport, all lookup functions will be generated for
	// string input as well.
	SourceType string

	Trie []*Trie

	IndexBlocks []*node
	ValueBlocks [][]uint64
	Compactions []compaction
	Checksum    uint64

	ASCIIBlock   string
	StarterBlock string

	indexBlockIdx map[uint64]int
	valueBlockIdx map[uint64]nodeIndex
	asciiBlockIdx map[uint64]int

	// Stats are used to fill out the template.
	Stats struct {
		NValueEntries int
		NValueBytes   int
		NIndexEntries int
		NIndexBytes   int
		NHandleBytes  int
	}

	err error
}

// A nodeIndex encodes the index of a node, which is defined by the compaction
// which stores it and an index within the compaction. For internal nodes, the
// compaction is always 0.
type nodeIndex struct {
	compaction int
	index      int
}

// compaction keeps track of stats used for the compaction.
type compaction struct {
	c         Compacter
	blocks    []*node
	maxHandle uint32
	totalSize int

	// Used by template-based generator and thus exported.
	Cutoff  uint32
	Offset  uint32
	Handler string
}

func (b *builder) setError(err error) {
	if b.err == nil {
		b.err = err
	}
}

// An Option can be passed to Gen.
type Option func(b *builder) error

// Compact configures the trie generator to use the given Compacter.
func Compact(c Compacter) Option {
	return func(b *builder) error {
		b.Compactions = append(b.Compactions, compaction{
			c:       c,
			Handler: c.Handler() + "(n, b)"})
		return nil
	}
}

// Gen writes Go code for a shared trie lookup structure to w for the given
// Tries. The generated trie type will be called nameTrie. newNameTrie(x) will
// return the *nameTrie for tries[x]. A value can be looked up by using one of
// the various lookup methods defined on nameTrie. It returns the table size of
// the generated trie.
func Gen(w io.Writer, name string, tries []*Trie, opts ...Option) (sz int, err error) {
	// The index contains two dummy blocks, followed by the zero block. The zero
	// block is at offset 0x80, so that the offset for the zero block for
	// continuation bytes is 0.
	b := &builder{
		Name:        name,
		Trie:        tries,
		IndexBlocks: []*node{{}, {}, {}},
		Compactions: []compaction{{
			Handler: name + "Values[n<<6+uint32(b)]",
		}},
		// The 0 key in indexBlockIdx and valueBlockIdx is the hash of the zero
		// block.
		indexBlockIdx: map[uint64]int{0: 0},
		valueBlockIdx: map[uint64]nodeIndex{0: {}},
		asciiBlockIdx: map[uint64]int{},
	}
	b.Compactions[0].c = (*simpleCompacter)(b)

	for _, f := range opts {
		if err := f(b); err != nil {
			return 0, err
		}
	}
	b.build()
	if b.err != nil {
		return 0, b.err
	}
	if err = b.print(w); err != nil {
		return 0, err
	}
	return b.Size(), nil
}

// A Trie represents a single root node of a trie. A builder may build several
// overlapping tries at once.
type Trie struct {
	root *node

	hiddenTrie
}

// hiddenTrie contains values we want to be visible to the template generator,
// but hidden from the API documentation.
type hiddenTrie struct {
	Name         string
	Checksum     uint64
	ASCIIIndex   int
	StarterIndex int
}

// NewTrie returns a new trie root.
func NewTrie(name string) *Trie {
	return &Trie{
		&node{
			children: make([]*node, blockSize),
			values:   make([]uint64, utf8.RuneSelf),
		},
		hiddenTrie{Name: name},
	}
}

// Gen is a convenience wrapper around the Gen func passing t as the only trie
// and uses the name passed to NewTrie. It returns the size of the generated
// tables.
func (t *Trie) Gen(w io.Writer, opts ...Option) (sz int, err error) {
	return Gen(w, t.Name, []*Trie{t}, opts...)
}

// node is a node of the intermediate trie structure.
type node struct {
	// children holds this node's children. It is always of length 64.
	// A child node may be nil.
	children []*node

	// values contains the values of this node. If it is non-nil, this node is
	// either a root or leaf node:
	// For root nodes, len(values) == 128 and it maps the bytes in [0x00, 0x7F].
	// For leaf nodes, len(values) ==  64 and it maps the bytes in [0x80, 0xBF].
	values []uint64

	index nodeIndex
}

// Insert associates value with the given rune. Insert will panic if a non-zero
// value is passed for an invalid rune.
func (t *Trie) Insert(r rune, value uint64) {
	if value == 0 {
		return
	}
	s := string(r)
	if []rune(s)[0] != r && value != 0 {
		// Note: The UCD tables will always assign what amounts to a zero value
		// to a surrogate. Allowing a zero value for an illegal rune allows
		// users to iterate over [0..MaxRune] without having to explicitly
		// exclude surrogates, which would be tedious.
		panic(fmt.Sprintf("triegen: non-zero value for invalid rune %U", r))
	}
	if len(s) == 1 {
		// It is a root node value (ASCII).
		t.root.values[s[0]] = value
		return
	}

	n := t.root
	for ; len(s) > 1; s = s[1:] {
		if n.children == nil {
			n.children = make([]*node, blockSize)
		}
		p := s[0] % blockSize
		c := n.children[p]
		if c == nil {
			c = &node{}
			n.children[p] = c
		}
		if len(s) > 2 && c.values != nil {
			log.Fatalf("triegen: insert(%U): found internal node with values", r)
		}
		n = c
	}
	if n.values == nil {
		n.values = make([]uint64, blockSize)
	}
	if n.children != nil {
		log.Fatalf("triegen: insert(%U): found leaf node that also has child nodes", r)
	}
	n.values[s[0]-0x80] = value
}

// Size returns the number of bytes the generated trie will take to store. It
// needs to be exported as it is used in the templates.
func (b *builder) Size() int {
	// Index blocks.
	sz := len(b.IndexBlocks) * blockSize * b.IndexSize

	// Skip the first compaction, which represents the normal value blocks, as
	// its totalSize does not account for the ASCII blocks, which are managed
	// separately.
	sz += len(b.ValueBlocks) * blockSize * b.ValueSize
	for _, c := range b.Compactions[1:] {
		sz += c.totalSize
	}

	// TODO: this computation does not account for the fixed overhead of a using
	// a compaction, either code or data. As for data, though, the typical
	// overhead of data is in the order of bytes (2 bytes for cases). Further,
	// the savings of using a compaction should anyway be substantial for it to
	// be worth it.

	// For multi-root tries, we also need to account for the handles.
	if len(b.Trie) > 1 {
		sz += 2 * b.IndexSize * len(b.Trie)
	}
	return sz
}

func (b *builder) build() {
	// Compute the sizes of the values.
	var vmax uint64
	for _, t := range b.Trie {
		vmax = maxValue(t.root, vmax)
	}
	b.ValueType, b.ValueSize = getIntType(vmax)

	// Compute all block allocations.
	// TODO: first compute the ASCII blocks for all tries and then the other
	// nodes. ASCII blocks are more restricted in placement, as they require two
	// blocks to be placed consecutively. Processing them first may improve
	// sharing (at least one zero block can be expected to be saved.)
	for _, t := range b.Trie {
		b.Checksum += b.buildTrie(t)
	}

	// Compute the offsets for all the Compacters.
	offset := uint32(0)
	for i := range b.Compactions {
		c := &b.Compactions[i]
		c.Offset = offset
		offset += c.maxHandle + 1
		c.Cutoff = offset
	}

	// Compute the sizes of indexes.
	// TODO: different byte positions could have different sizes. So far we have
	// not found a case where this is beneficial.
	imax := uint64(b.Compactions[len(b.Compactions)-1].Cutoff)
	for _, ib := range b.IndexBlocks {
		if x := uint64(ib.index.index); x > imax {
			imax = x
		}
	}
	b.IndexType, b.IndexSize = getIntType(imax)
}

func maxValue(n *node, max uint64) uint64 {
	if n == nil {
		return max
	}
	for _, c := range n.children {
		max = maxValue(c, max)
	}
	for _, v := range n.values {
		if max < v {
			max = v
		}
	}
	return max
}

func getIntType(v uint64) (string, int) {
	switch {
	case v < 1<<8:
		return "uint8", 1
	case v < 1<<16:
		return "uint16", 2
	case v < 1<<32:
		return "uint32", 4
	}
	return "uint64", 8
}

const (
	blockSize = 64

	// Subtract two blocks to offset 0x80, the first continuation byte.
	blockOffset = 2

	// Subtract three blocks to offset 0xC0, the first non-ASCII starter.
	rootBlockOffset = 3
)

var crcTable = crc64.MakeTable(crc64.ISO)

func (b *builder) buildTrie(t *Trie) uint64 {
	n := t.root

	// Get the ASCII offset. For the first trie, the ASCII block will be at
	// position 0.
	hasher := crc64.New(crcTable)
	binary.Write(hasher, binary.BigEndian, n.values)
	hash := hasher.Sum64()

	v, ok := b.asciiBlockIdx[hash]
	if !ok {
		v = len(b.ValueBlocks)
		b.asciiBlockIdx[hash] = v

		b.ValueBlocks = append(b.ValueBlocks, n.values[:blockSize], n.values[blockSize:])
		if v == 0 {
			// Add the zero block at position 2 so that it will be assigned a
			// zero reference in the lookup blocks.
			// TODO: always do this? This would allow us to remove a check from
			// the trie lookup, but at the expense of extra space. Analyze
			// performance for unicode/norm.
			b.ValueBlocks = append(b.ValueBlocks, make([]uint64, blockSize))
		}
	}
	t.ASCIIIndex = v

	// Compute remaining offsets.
	t.Checksum = b.computeOffsets(n, true)
	// We already subtracted the normal blockOffset from the index. Subtract the
	// difference for starter bytes.
	t.StarterIndex = n.index.index - (rootBlockOffset - blockOffset)
	return t.Checksum
}

func (b *builder) computeOffsets(n *node, root bool) uint64 {
	// For the first trie, the root lookup block will be at position 3, which is
	// the offset for UTF-8 non-ASCII starter bytes.
	first := len(b.IndexBlocks) == rootBlockOffset
	if first {
		b.IndexBlocks = append(b.IndexBlocks, n)
	}

	// We special-case the cases where all values recursively are 0. This allows
	// for the use of a zero block to which all such values can be directed.
	hash := uint64(0)
	if n.children != nil || n.values != nil {
		hasher := crc64.New(crcTable)
		for _, c := range n.children {
			var v uint64
			if c != nil {
				v = b.computeOffsets(c, false)
			}
			binary.Write(hasher, binary.BigEndian, v)
		}
		binary.Write(hasher, binary.BigEndian, n.values)
		hash = hasher.Sum64()
	}

	if first {
		b.indexBlockIdx[hash] = rootBlockOffset - blockOffset
	}

	// Compacters don't apply to internal nodes.
	if n.children != nil {
		v, ok := b.indexBlockIdx[hash]
		if !ok {
			v = len(b.IndexBlocks) - blockOffset
			b.IndexBlocks = append(b.IndexBlocks, n)
			b.indexBlockIdx[hash] = v
		}
		n.index = nodeIndex{0, v}
	} else {
		h, ok := b.valueBlockIdx[hash]
		if !ok {
			bestI, bestSize := 0, blockSize*b.ValueSize
			for i, c := range b.Compactions[1:] {
				if sz, ok := c.c.Size(n.values); ok && bestSize > sz {
					bestI, bestSize = i+1, sz
				}
			}
			c := &b.Compactions[bestI]
			c.totalSize += bestSize
			v := c.c.Store(n.values)
			if c.maxHandle < v {
				c.maxHandle = v
			}
			h = nodeIndex{bestI, int(v)}
			b.valueBlockIdx[hash] = h
		}
		n.index = h
	}
	return hash
}