aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/golang/snappy/encode_amd64.s
blob: adfd979fe277aa548dc545ab9940a9ad0118fe2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build !appengine
// +build gc
// +build !noasm

#include "textflag.h"

// The XXX lines assemble on Go 1.4, 1.5 and 1.7, but not 1.6, due to a
// Go toolchain regression. See https://github.com/golang/go/issues/15426 and
// https://github.com/golang/snappy/issues/29
//
// As a workaround, the package was built with a known good assembler, and
// those instructions were disassembled by "objdump -d" to yield the
//	4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
// style comments, in AT&T asm syntax. Note that rsp here is a physical
// register, not Go/asm's SP pseudo-register (see https://golang.org/doc/asm).
// The instructions were then encoded as "BYTE $0x.." sequences, which assemble
// fine on Go 1.6.

// The asm code generally follows the pure Go code in encode_other.go, except
// where marked with a "!!!".

// ----------------------------------------------------------------------------

// func emitLiteral(dst, lit []byte) int
//
// All local variables fit into registers. The register allocation:
//	- AX	len(lit)
//	- BX	n
//	- DX	return value
//	- DI	&dst[i]
//	- R10	&lit[0]
//
// The 24 bytes of stack space is to call runtime·memmove.
//
// The unusual register allocation of local variables, such as R10 for the
// source pointer, matches the allocation used at the call site in encodeBlock,
// which makes it easier to manually inline this function.
TEXT ·emitLiteral(SB), NOSPLIT, $24-56
	MOVQ dst_base+0(FP), DI
	MOVQ lit_base+24(FP), R10
	MOVQ lit_len+32(FP), AX
	MOVQ AX, DX
	MOVL AX, BX
	SUBL $1, BX

	CMPL BX, $60
	JLT  oneByte
	CMPL BX, $256
	JLT  twoBytes

threeBytes:
	MOVB $0xf4, 0(DI)
	MOVW BX, 1(DI)
	ADDQ $3, DI
	ADDQ $3, DX
	JMP  memmove

twoBytes:
	MOVB $0xf0, 0(DI)
	MOVB BX, 1(DI)
	ADDQ $2, DI
	ADDQ $2, DX
	JMP  memmove

oneByte:
	SHLB $2, BX
	MOVB BX, 0(DI)
	ADDQ $1, DI
	ADDQ $1, DX

memmove:
	MOVQ DX, ret+48(FP)

	// copy(dst[i:], lit)
	//
	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
	// DI, R10 and AX as arguments.
	MOVQ DI, 0(SP)
	MOVQ R10, 8(SP)
	MOVQ AX, 16(SP)
	CALL runtime·memmove(SB)
	RET

// ----------------------------------------------------------------------------

// func emitCopy(dst []byte, offset, length int) int
//
// All local variables fit into registers. The register allocation:
//	- AX	length
//	- SI	&dst[0]
//	- DI	&dst[i]
//	- R11	offset
//
// The unusual register allocation of local variables, such as R11 for the
// offset, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·emitCopy(SB), NOSPLIT, $0-48
	MOVQ dst_base+0(FP), DI
	MOVQ DI, SI
	MOVQ offset+24(FP), R11
	MOVQ length+32(FP), AX

loop0:
	// for length >= 68 { etc }
	CMPL AX, $68
	JLT  step1

	// Emit a length 64 copy, encoded as 3 bytes.
	MOVB $0xfe, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI
	SUBL $64, AX
	JMP  loop0

step1:
	// if length > 64 { etc }
	CMPL AX, $64
	JLE  step2

	// Emit a length 60 copy, encoded as 3 bytes.
	MOVB $0xee, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI
	SUBL $60, AX

step2:
	// if length >= 12 || offset >= 2048 { goto step3 }
	CMPL AX, $12
	JGE  step3
	CMPL R11, $2048
	JGE  step3

	// Emit the remaining copy, encoded as 2 bytes.
	MOVB R11, 1(DI)
	SHRL $8, R11
	SHLB $5, R11
	SUBB $4, AX
	SHLB $2, AX
	ORB  AX, R11
	ORB  $1, R11
	MOVB R11, 0(DI)
	ADDQ $2, DI

	// Return the number of bytes written.
	SUBQ SI, DI
	MOVQ DI, ret+40(FP)
	RET

step3:
	// Emit the remaining copy, encoded as 3 bytes.
	SUBL $1, AX
	SHLB $2, AX
	ORB  $2, AX
	MOVB AX, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI

	// Return the number of bytes written.
	SUBQ SI, DI
	MOVQ DI, ret+40(FP)
	RET

// ----------------------------------------------------------------------------

// func extendMatch(src []byte, i, j int) int
//
// All local variables fit into registers. The register allocation:
//	- DX	&src[0]
//	- SI	&src[j]
//	- R13	&src[len(src) - 8]
//	- R14	&src[len(src)]
//	- R15	&src[i]
//
// The unusual register allocation of local variables, such as R15 for a source
// pointer, matches the allocation used at the call site in encodeBlock, which
// makes it easier to manually inline this function.
TEXT ·extendMatch(SB), NOSPLIT, $0-48
	MOVQ src_base+0(FP), DX
	MOVQ src_len+8(FP), R14
	MOVQ i+24(FP), R15
	MOVQ j+32(FP), SI
	ADDQ DX, R14
	ADDQ DX, R15
	ADDQ DX, SI
	MOVQ R14, R13
	SUBQ $8, R13

cmp8:
	// As long as we are 8 or more bytes before the end of src, we can load and
	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
	CMPQ SI, R13
	JA   cmp1
	MOVQ (R15), AX
	MOVQ (SI), BX
	CMPQ AX, BX
	JNE  bsf
	ADDQ $8, R15
	ADDQ $8, SI
	JMP  cmp8

bsf:
	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
	// the index of the first byte that differs. The BSF instruction finds the
	// least significant 1 bit, the amd64 architecture is little-endian, and
	// the shift by 3 converts a bit index to a byte index.
	XORQ AX, BX
	BSFQ BX, BX
	SHRQ $3, BX
	ADDQ BX, SI

	// Convert from &src[ret] to ret.
	SUBQ DX, SI
	MOVQ SI, ret+40(FP)
	RET

cmp1:
	// In src's tail, compare 1 byte at a time.
	CMPQ SI, R14
	JAE  extendMatchEnd
	MOVB (R15), AX
	MOVB (SI), BX
	CMPB AX, BX
	JNE  extendMatchEnd
	ADDQ $1, R15
	ADDQ $1, SI
	JMP  cmp1

extendMatchEnd:
	// Convert from &src[ret] to ret.
	SUBQ DX, SI
	MOVQ SI, ret+40(FP)
	RET

// ----------------------------------------------------------------------------

// func encodeBlock(dst, src []byte) (d int)
//
// All local variables fit into registers, other than "var table". The register
// allocation:
//	- AX	.	.
//	- BX	.	.
//	- CX	56	shift (note that amd64 shifts by non-immediates must use CX).
//	- DX	64	&src[0], tableSize
//	- SI	72	&src[s]
//	- DI	80	&dst[d]
//	- R9	88	sLimit
//	- R10	.	&src[nextEmit]
//	- R11	96	prevHash, currHash, nextHash, offset
//	- R12	104	&src[base], skip
//	- R13	.	&src[nextS], &src[len(src) - 8]
//	- R14	.	len(src), bytesBetweenHashLookups, &src[len(src)], x
//	- R15	112	candidate
//
// The second column (56, 64, etc) is the stack offset to spill the registers
// when calling other functions. We could pack this slightly tighter, but it's
// simpler to have a dedicated spill map independent of the function called.
//
// "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An
// extra 56 bytes, to call other functions, and an extra 64 bytes, to spill
// local variables (registers) during calls gives 32768 + 56 + 64 = 32888.
TEXT ·encodeBlock(SB), 0, $32888-56
	MOVQ dst_base+0(FP), DI
	MOVQ src_base+24(FP), SI
	MOVQ src_len+32(FP), R14

	// shift, tableSize := uint32(32-8), 1<<8
	MOVQ $24, CX
	MOVQ $256, DX

calcShift:
	// for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
	//	shift--
	// }
	CMPQ DX, $16384
	JGE  varTable
	CMPQ DX, R14
	JGE  varTable
	SUBQ $1, CX
	SHLQ $1, DX
	JMP  calcShift

varTable:
	// var table [maxTableSize]uint16
	//
	// In the asm code, unlike the Go code, we can zero-initialize only the
	// first tableSize elements. Each uint16 element is 2 bytes and each MOVOU
	// writes 16 bytes, so we can do only tableSize/8 writes instead of the
	// 2048 writes that would zero-initialize all of table's 32768 bytes.
	SHRQ $3, DX
	LEAQ table-32768(SP), BX
	PXOR X0, X0

memclr:
	MOVOU X0, 0(BX)
	ADDQ  $16, BX
	SUBQ  $1, DX
	JNZ   memclr

	// !!! DX = &src[0]
	MOVQ SI, DX

	// sLimit := len(src) - inputMargin
	MOVQ R14, R9
	SUBQ $15, R9

	// !!! Pre-emptively spill CX, DX and R9 to the stack. Their values don't
	// change for the rest of the function.
	MOVQ CX, 56(SP)
	MOVQ DX, 64(SP)
	MOVQ R9, 88(SP)

	// nextEmit := 0
	MOVQ DX, R10

	// s := 1
	ADDQ $1, SI

	// nextHash := hash(load32(src, s), shift)
	MOVL  0(SI), R11
	IMULL $0x1e35a7bd, R11
	SHRL  CX, R11

outer:
	// for { etc }

	// skip := 32
	MOVQ $32, R12

	// nextS := s
	MOVQ SI, R13

	// candidate := 0
	MOVQ $0, R15

inner0:
	// for { etc }

	// s := nextS
	MOVQ R13, SI

	// bytesBetweenHashLookups := skip >> 5
	MOVQ R12, R14
	SHRQ $5, R14

	// nextS = s + bytesBetweenHashLookups
	ADDQ R14, R13

	// skip += bytesBetweenHashLookups
	ADDQ R14, R12

	// if nextS > sLimit { goto emitRemainder }
	MOVQ R13, AX
	SUBQ DX, AX
	CMPQ AX, R9
	JA   emitRemainder

	// candidate = int(table[nextHash])
	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
	BYTE $0x4e
	BYTE $0x0f
	BYTE $0xb7
	BYTE $0x7c
	BYTE $0x5c
	BYTE $0x78

	// table[nextHash] = uint16(s)
	MOVQ SI, AX
	SUBQ DX, AX

	// XXX: MOVW AX, table-32768(SP)(R11*2)
	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
	BYTE $0x66
	BYTE $0x42
	BYTE $0x89
	BYTE $0x44
	BYTE $0x5c
	BYTE $0x78

	// nextHash = hash(load32(src, nextS), shift)
	MOVL  0(R13), R11
	IMULL $0x1e35a7bd, R11
	SHRL  CX, R11

	// if load32(src, s) != load32(src, candidate) { continue } break
	MOVL 0(SI), AX
	MOVL (DX)(R15*1), BX
	CMPL AX, BX
	JNE  inner0

fourByteMatch:
	// As per the encode_other.go code:
	//
	// A 4-byte match has been found. We'll later see etc.

	// !!! Jump to a fast path for short (<= 16 byte) literals. See the comment
	// on inputMargin in encode.go.
	MOVQ SI, AX
	SUBQ R10, AX
	CMPQ AX, $16
	JLE  emitLiteralFastPath

	// ----------------------------------------
	// Begin inline of the emitLiteral call.
	//
	// d += emitLiteral(dst[d:], src[nextEmit:s])

	MOVL AX, BX
	SUBL $1, BX

	CMPL BX, $60
	JLT  inlineEmitLiteralOneByte
	CMPL BX, $256
	JLT  inlineEmitLiteralTwoBytes

inlineEmitLiteralThreeBytes:
	MOVB $0xf4, 0(DI)
	MOVW BX, 1(DI)
	ADDQ $3, DI
	JMP  inlineEmitLiteralMemmove

inlineEmitLiteralTwoBytes:
	MOVB $0xf0, 0(DI)
	MOVB BX, 1(DI)
	ADDQ $2, DI
	JMP  inlineEmitLiteralMemmove

inlineEmitLiteralOneByte:
	SHLB $2, BX
	MOVB BX, 0(DI)
	ADDQ $1, DI

inlineEmitLiteralMemmove:
	// Spill local variables (registers) onto the stack; call; unspill.
	//
	// copy(dst[i:], lit)
	//
	// This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push
	// DI, R10 and AX as arguments.
	MOVQ DI, 0(SP)
	MOVQ R10, 8(SP)
	MOVQ AX, 16(SP)
	ADDQ AX, DI              // Finish the "d +=" part of "d += emitLiteral(etc)".
	MOVQ SI, 72(SP)
	MOVQ DI, 80(SP)
	MOVQ R15, 112(SP)
	CALL runtime·memmove(SB)
	MOVQ 56(SP), CX
	MOVQ 64(SP), DX
	MOVQ 72(SP), SI
	MOVQ 80(SP), DI
	MOVQ 88(SP), R9
	MOVQ 112(SP), R15
	JMP  inner1

inlineEmitLiteralEnd:
	// End inline of the emitLiteral call.
	// ----------------------------------------

emitLiteralFastPath:
	// !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2".
	MOVB AX, BX
	SUBB $1, BX
	SHLB $2, BX
	MOVB BX, (DI)
	ADDQ $1, DI

	// !!! Implement the copy from lit to dst as a 16-byte load and store.
	// (Encode's documentation says that dst and src must not overlap.)
	//
	// This always copies 16 bytes, instead of only len(lit) bytes, but that's
	// OK. Subsequent iterations will fix up the overrun.
	//
	// Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
	// 16-byte loads and stores. This technique probably wouldn't be as
	// effective on architectures that are fussier about alignment.
	MOVOU 0(R10), X0
	MOVOU X0, 0(DI)
	ADDQ  AX, DI

inner1:
	// for { etc }

	// base := s
	MOVQ SI, R12

	// !!! offset := base - candidate
	MOVQ R12, R11
	SUBQ R15, R11
	SUBQ DX, R11

	// ----------------------------------------
	// Begin inline of the extendMatch call.
	//
	// s = extendMatch(src, candidate+4, s+4)

	// !!! R14 = &src[len(src)]
	MOVQ src_len+32(FP), R14
	ADDQ DX, R14

	// !!! R13 = &src[len(src) - 8]
	MOVQ R14, R13
	SUBQ $8, R13

	// !!! R15 = &src[candidate + 4]
	ADDQ $4, R15
	ADDQ DX, R15

	// !!! s += 4
	ADDQ $4, SI

inlineExtendMatchCmp8:
	// As long as we are 8 or more bytes before the end of src, we can load and
	// compare 8 bytes at a time. If those 8 bytes are equal, repeat.
	CMPQ SI, R13
	JA   inlineExtendMatchCmp1
	MOVQ (R15), AX
	MOVQ (SI), BX
	CMPQ AX, BX
	JNE  inlineExtendMatchBSF
	ADDQ $8, R15
	ADDQ $8, SI
	JMP  inlineExtendMatchCmp8

inlineExtendMatchBSF:
	// If those 8 bytes were not equal, XOR the two 8 byte values, and return
	// the index of the first byte that differs. The BSF instruction finds the
	// least significant 1 bit, the amd64 architecture is little-endian, and
	// the shift by 3 converts a bit index to a byte index.
	XORQ AX, BX
	BSFQ BX, BX
	SHRQ $3, BX
	ADDQ BX, SI
	JMP  inlineExtendMatchEnd

inlineExtendMatchCmp1:
	// In src's tail, compare 1 byte at a time.
	CMPQ SI, R14
	JAE  inlineExtendMatchEnd
	MOVB (R15), AX
	MOVB (SI), BX
	CMPB AX, BX
	JNE  inlineExtendMatchEnd
	ADDQ $1, R15
	ADDQ $1, SI
	JMP  inlineExtendMatchCmp1

inlineExtendMatchEnd:
	// End inline of the extendMatch call.
	// ----------------------------------------

	// ----------------------------------------
	// Begin inline of the emitCopy call.
	//
	// d += emitCopy(dst[d:], base-candidate, s-base)

	// !!! length := s - base
	MOVQ SI, AX
	SUBQ R12, AX

inlineEmitCopyLoop0:
	// for length >= 68 { etc }
	CMPL AX, $68
	JLT  inlineEmitCopyStep1

	// Emit a length 64 copy, encoded as 3 bytes.
	MOVB $0xfe, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI
	SUBL $64, AX
	JMP  inlineEmitCopyLoop0

inlineEmitCopyStep1:
	// if length > 64 { etc }
	CMPL AX, $64
	JLE  inlineEmitCopyStep2

	// Emit a length 60 copy, encoded as 3 bytes.
	MOVB $0xee, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI
	SUBL $60, AX

inlineEmitCopyStep2:
	// if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 }
	CMPL AX, $12
	JGE  inlineEmitCopyStep3
	CMPL R11, $2048
	JGE  inlineEmitCopyStep3

	// Emit the remaining copy, encoded as 2 bytes.
	MOVB R11, 1(DI)
	SHRL $8, R11
	SHLB $5, R11
	SUBB $4, AX
	SHLB $2, AX
	ORB  AX, R11
	ORB  $1, R11
	MOVB R11, 0(DI)
	ADDQ $2, DI
	JMP  inlineEmitCopyEnd

inlineEmitCopyStep3:
	// Emit the remaining copy, encoded as 3 bytes.
	SUBL $1, AX
	SHLB $2, AX
	ORB  $2, AX
	MOVB AX, 0(DI)
	MOVW R11, 1(DI)
	ADDQ $3, DI

inlineEmitCopyEnd:
	// End inline of the emitCopy call.
	// ----------------------------------------

	// nextEmit = s
	MOVQ SI, R10

	// if s >= sLimit { goto emitRemainder }
	MOVQ SI, AX
	SUBQ DX, AX
	CMPQ AX, R9
	JAE  emitRemainder

	// As per the encode_other.go code:
	//
	// We could immediately etc.

	// x := load64(src, s-1)
	MOVQ -1(SI), R14

	// prevHash := hash(uint32(x>>0), shift)
	MOVL  R14, R11
	IMULL $0x1e35a7bd, R11
	SHRL  CX, R11

	// table[prevHash] = uint16(s-1)
	MOVQ SI, AX
	SUBQ DX, AX
	SUBQ $1, AX

	// XXX: MOVW AX, table-32768(SP)(R11*2)
	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
	BYTE $0x66
	BYTE $0x42
	BYTE $0x89
	BYTE $0x44
	BYTE $0x5c
	BYTE $0x78

	// currHash := hash(uint32(x>>8), shift)
	SHRQ  $8, R14
	MOVL  R14, R11
	IMULL $0x1e35a7bd, R11
	SHRL  CX, R11

	// candidate = int(table[currHash])
	// XXX: MOVWQZX table-32768(SP)(R11*2), R15
	// XXX: 4e 0f b7 7c 5c 78       movzwq 0x78(%rsp,%r11,2),%r15
	BYTE $0x4e
	BYTE $0x0f
	BYTE $0xb7
	BYTE $0x7c
	BYTE $0x5c
	BYTE $0x78

	// table[currHash] = uint16(s)
	ADDQ $1, AX

	// XXX: MOVW AX, table-32768(SP)(R11*2)
	// XXX: 66 42 89 44 5c 78       mov    %ax,0x78(%rsp,%r11,2)
	BYTE $0x66
	BYTE $0x42
	BYTE $0x89
	BYTE $0x44
	BYTE $0x5c
	BYTE $0x78

	// if uint32(x>>8) == load32(src, candidate) { continue }
	MOVL (DX)(R15*1), BX
	CMPL R14, BX
	JEQ  inner1

	// nextHash = hash(uint32(x>>16), shift)
	SHRQ  $8, R14
	MOVL  R14, R11
	IMULL $0x1e35a7bd, R11
	SHRL  CX, R11

	// s++
	ADDQ $1, SI

	// break out of the inner1 for loop, i.e. continue the outer loop.
	JMP outer

emitRemainder:
	// if nextEmit < len(src) { etc }
	MOVQ src_len+32(FP), AX
	ADDQ DX, AX
	CMPQ R10, AX
	JEQ  encodeBlockEnd

	// d += emitLiteral(dst[d:], src[nextEmit:])
	//
	// Push args.
	MOVQ DI, 0(SP)
	MOVQ $0, 8(SP)   // Unnecessary, as the callee ignores it, but conservative.
	MOVQ $0, 16(SP)  // Unnecessary, as the callee ignores it, but conservative.
	MOVQ R10, 24(SP)
	SUBQ R10, AX
	MOVQ AX, 32(SP)
	MOVQ AX, 40(SP)  // Unnecessary, as the callee ignores it, but conservative.

	// Spill local variables (registers) onto the stack; call; unspill.
	MOVQ DI, 80(SP)
	CALL ·emitLiteral(SB)
	MOVQ 80(SP), DI

	// Finish the "d +=" part of "d += emitLiteral(etc)".
	ADDQ 48(SP), DI

encodeBlockEnd:
	MOVQ dst_base+0(FP), AX
	SUBQ AX, DI
	MOVQ DI, d+48(FP)
	RET